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In the rapidly evolving landscape of technology-driven commerce, laptops have 
become indispensable for both personal and professional applications, with a vast array of 
models presenting varied specifications and features. The intricate interplay of hardware 
configurations and pricing frameworks underscores the necessity for robust predictive 
models that empower consumers and manufacturers to make well-informed choices.  This 
study delves into the critical challenge of accurately forecasting laptop prices by 
evaluating three machine learning methodologies: Linear Regression (LR), Histogram 
Gradient Boosting Regression (HGBR), and XGBoost Regression (XGBR). The 
research's importance is rooted in its capacity to refine pricing strategies, bolster market 
efficiency, and provide consumers with deeper insights into the value dynamics associated 
with different laptop specifications. 

The study leveraged an extensive dataset comprising 1,303 laptop entries, each 
characterized by 11 pivotal attributes encompassing processor type, RAM, storage 
capacity, screen dimensions, and graphical performance. Analytical techniques 
encompassed correlation assessment, feature significance determination, and comparative 
evaluation of model efficacy, employing key performance indicators such as the R² 
coefficient, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean 
Absolute Error (MAE). XGBoost demonstrated a clear dominance over other predictive 
models, securing an R² value of 0.93559 on training data and 0.77524 on testing data. This 
superiority was further underscored by its markedly lower error margins, with an RMSE 
of 9,334.9 for training data, starkly contrasting the significantly higher 23,506.3 observed 
in Linear Regression. A thorough correlation analysis pinpointed RAM and processor 
specifications as the most decisive variables influencing price determination.   

The study asserts that ensemble learning methodologies, particularly XGBoost, 
represent the most dependable strategy for forecasting laptop prices. Nonetheless, the 
research highlights key areas for refinement, especially in narrowing the discrepancy 
between training and testing performance. These insights hold substantial implications for 
stakeholders in the laptop industry, paving the way for the advancement of more 
sophisticated predictive frameworks. Furthermore, the study enriches the broader 
discourse on consumer electronics pricing, emphasizing the transformative role of 
machine learning in optimizing market dynamics and strategic decision-making. 
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Introduction 
Computers have become an indispensable aspect of modern 

existence, to the extent that many individuals find it difficult to 
envision life without them. This reality underscores the profound 
significance of computers in contemporary society. Their ability 
to simplify and enhance daily activities—whether by facilitating 
data retrieval and storage, enabling the creation of tables and 
diagrams, or allowing for sophisticated editing of images, audio, 
and video—makes them an essential tool. Additionally, they 
bridge vast geographical distances, enabling seamless 
communication with millions across the globe. Personal 
computers are generally categorized based on their form factor 
and casing, with laptops representing a prominent subset of this 
classification [1].  Laptops are favored by individuals and 
organizations alike due to their versatility, portability, and ease 
of mobility.  

The market is inundated with a plethora of laptop models, 
each boasting distinct brands and specifications, yet many 
appear strikingly similar. Consequently, selecting an optimal 
laptop tailored to a buyer’s specific needs becomes not only 
crucial but also a complex challenge. Similar to the intricacies 
involved in laptop selection, numerous problems across 
engineering, industry, and various other domains necessitate the 
simultaneous optimization of multiple competing objectives. 
Addressing such multi-objective optimization dilemmas 
demands meticulous evaluation and, in many cases, the 
application of advanced algorithms designed to navigate trade-
offs and identify balanced solutions effectively [2].Sales of 
desktop and personal computers have been on a steady decline, 
whereas the trajectory of laptops and tablets has exhibited a 
temporary dip followed by a robust resurgence.  

The ubiquity of computer sales becomes evident when one 
considers the typical five-year lifespan of these devices. With 
each passing year, new enhancements emerge in response to 
relentless market demand, necessitating discerning decision-
making. The presence of numerous brands, models, and 
integrated features further complicates this selection process, 
making it a formidable challenge [3].  In the modern era, 
envisioning life without computers is nearly inconceivable for 
many. This reality underscores the indispensable role these 
machines play in daily existence. Their utility extends far 
beyond mere convenience, enabling individuals to retrieve and 
store information, construct tables and charts, and manipulate 
images, sound, and video with remarkable ease. Consequently, 
choosing the ideal computer has evolved into a critical 
investment, shaping both personal efficiency and professional 
output while directly impacting user experience and 
technological satisfaction [4]. People can communicate with 
millions worldwide at the same time, regardless of their 
geographical locations.  

The classification of personal computers is often based on 
their size and external structure. Among these, a laptop stands  

 
out as a prime example. Due to their adaptability, portability, 
and ease of movement, laptops have gained widespread 
popularity. The market offers a vast array of laptops from 
different manufacturers, each boasting unique specifications and 
capabilities. Striking an optimal balance between conflicting 
factors can drive innovation, improving efficiency and 
performance across various domains, including product 
development and resource management [5].  Laptops often share 
striking similarities in appearance, making it both essential and 
challenging to select one that aligns with a buyer’s specific 
needs. This dilemma mirrors numerous technical, business, and 
analytical challenges where multiple competing objectives must 
be optimized simultaneously. Much like the process of laptop 
selection, finding equilibrium between processing power, battery 
longevity, and affordability can seem daunting.  

However, a clear understanding of personal requirements 
can significantly streamline the decision-making process [6]. 
Modern computers, especially laptops, come equipped with an 
array of features that must be weighed carefully when selecting a 
device for a specific purpose. Furthermore, it is widely 
acknowledged that higher-priced components often yield 
superior performance, making the process of choosing an 
appropriate laptop even more intricate. Assessing the balance 
between factors like computational power, data storage, and ease 
of transport is crucial in arriving at a well-informed decision that 
harmonizes financial limitations with desired functionality [7].  
Decision-making permeates daily life, whether for personal 
needs, household matters, or professional responsibilities. At 
times, this involves selecting from multiple alternatives or 
committing to a singular option. The act of making choices and 
critically assessing them is as ancient as human civilization 
itself, yet innovative methodologies continue to emerge.  

A deeper grasp of these advancing decision-making 
paradigms equips individuals to better manage the intricacies of 
contemporary consumer landscapes, fostering more effective and 
fulfilling resolutions [8].The act of forming a judgment becomes 
considerably more intricate when confronted with an array of 
choices or alternatives. Historically, individuals relied on their 
cognitive faculties to navigate selections characterized by 
diverse attributes. However, the rapid evolution of technology, 
the expansion of global commerce, and the proliferation of 
nearly indistinguishable products have significantly complicated 
this decision-making landscape. Consequently, structured 
models have been devised to facilitate choice optimization, each 
distinguished by unique analytical frameworks and 
methodological approaches [9].  

These frameworks frequently integrate data analytics, 
behavioral economics, and machine learning algorithms, refining 
the predictive accuracy of consumer preferences while 
enhancing strategic decision-making. Through the application of 
these advanced techniques, businesses can cultivate a profound 
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comprehension of consumer tendencies, enabling them to 
customize their products and marketing strategies with greater 
precision [10]. Such personalization not only elevates consumer 
satisfaction but also serves as a catalyst for business expansion 
by strengthening customer loyalty and fostering recurrent 
transactions. Consequently, corporations are increasingly 
channeling resources into cutting-edge analytical tools and 
emerging technologies, equipping themselves to process 
immense volumes of data and sustain a competitive edge in an 
ever-shifting economic environment [11]. 
MATERIALS 

This research employs the 'Laptop Price Prediction' dataset, 
sourced from Kaggle (Elsolia, 2025), encompassing 1303 entries 
and 11 distinct attributes tied to laptop specifications. The 
dataset encapsulates crucial variables such as brand, RAM, 
GPU, and other defining hardware elements that influence price 
prediction. It serves as a valuable asset for machine learning 
models striving to estimate laptop costs by analyzing diverse 
technological and brand-related factors. Freely accessible for 
download at 
https://www.kaggle.com/datasets/eslamelsolya/laptop-price-
prediction/data, this dataset stands as a substantial resource for 
research and analytical explorations within this domain [12]. 

Inches: Representing the diagonal screen measurement in 
inches, this parameter significantly impacts both portability and 
display characteristics. Larger screens afford a broader viewing 
canvas, catering to gaming enthusiasts, content creators, and 
multimedia consumers, whereas smaller screens prioritize 
compactness and mobility—ideal for professionals frequently on 
the move or users valuing lightweight devices over expansive 
displays. 

Screen Resolution: Defined by the pixel count arranged in 
width x height format (e.g., 1920x1080), screen resolution 
determines image sharpness and clarity. Higher resolutions 
enhance visual fidelity, making activities like gaming, video 
editing, and web browsing more immersive. Standard resolutions 
include Full HD and 4K, with superior models commanding a 
higher price due to their refined display quality and enhanced 
viewing experience. 

CPU: Functioning as the computational core of a laptop, the 
CPU (Central Processing Unit) orchestrates instruction 
execution and task processing. It dictates operational speed, 
multitasking proficiency, and the system’s ability to handle 
intensive computations. Contemporary CPUs—such as Intel 
Core i5, i7, or AMD Ryzen—differ in core count, clock speed, 
and architectural advancements. A high-performance CPU 
translates to superior efficiency, particularly in demanding tasks 
like gaming, programming, or video editing. 

RAM: Random Access Memory (RAM) functions as a 
volatile data repository, enabling a laptop to juggle multiple 
applications concurrently by facilitating rapid data retrieval. The 

system's multitasking prowess is inherently tied to RAM 
capacity—greater volumes of RAM empower the device to 
seamlessly manage intensive workloads, whether involving 
numerous software processes or handling expansive files. 
Typically, laptops are outfitted with RAM ranging from 4GB to 
16GB, where higher capacities markedly enhance system 
responsiveness and operational fluidity. 

Memory: In the context of laptops, memory denotes the 
storage reservoir where system files, user applications, and 
essential data reside. This classification primarily pertains to 
onboard storage solutions, encompassing Hard Disk Drives 
(HDDs) and Solid-State Drives (SSDs). The latter, SSDs, 
outpace HDDs in terms of read/write speeds, leading to swifter 
boot sequences, expedited file transactions, and heightened 
system agility. Storage capacity, denoted in increments like 
256GB or 512GB, dictates the volume of data a device can 
retain, with more substantial allocations catering to users with 
extensive digital storage needs. 

GPU: The Graphics Processing Unit (GPU) dictates the 
efficiency of visual rendering, encompassing images, 
animations, and video playback. It is pivotal for resource-
intensive applications such as high-resolution gaming, complex 
video editing, and intricate 3D modeling. Laptops integrated 
with dedicated GPUs—exemplified by NVIDIA GeForce or 
AMD Radeon—deliver superior graphical fidelity compared to 
their integrated counterparts, which rely on shared system 
memory. The potency of a GPU profoundly shapes multimedia 
performance, gaming fluidity, and the execution of graphically 
demanding tasks. 

OpSys: The Operating System (OpSys) constitutes the 
foundational software architecture that orchestrates hardware 
management and provides a user interface for seamless 
interaction. Prominent operating systems include Windows, mac 
OS, and Linux, each presenting distinctive attributes, 
compatibility matrices, and ecosystem integrations. Windows-
based laptops cater to a diverse spectrum of users, spanning 
gaming, enterprise environments, and general-purpose 
computing. Conversely, mac OS is lauded for its refined user 
experience and seamless synchronization with Apple’s hardware 
ecosystem, whereas Linux appeals to developers and enthusiasts 
favoring an open-source, customizable platform. 

Weight: A laptop’s weight significantly influences its 
portability, an essential consideration for users who require 
mobility in their workflow. Devices weighing between 1kg and 
2kg epitomize lightweight convenience, making them 
particularly well-suited for students and traveling professionals. 
Heavier laptops, though potentially offering superior hardware 
capabilities or expansive displays, may present challenges in 
transportability. Slimmer models often prioritize energy 
efficiency, extended battery endurance, and ergonomic usability, 
optimizing comfort during prolonged use. 
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Price: The monetary valuation of a laptop is directly 
proportional to its hardware prowess, feature set, and brand 
prestige. Devices boasting high-performance CPUs, expansive 
RAM configurations, high-resolution displays, and discrete 
GPUs command premium price points. Conversely, budget-
friendly models with modest specifications offer affordability at 
the cost of reduced performance. Additional factors influencing 
price include material quality, brand recognition, and bundled 
software offerings, creating a diverse pricing spectrum tailored 
to varied user requirements and financial considerations. 
 
OPTIMIZATION TECHNIQUES 

1. Linear Regression: 
Linear regression serves as a cornerstone of statistical 

analysis, facilitating the modeling of relationships between a 
dependent variable and one or more independent variables. 
Extensively utilized in predictive analytics, this method enables 
researchers and analysts to decipher the influence exerted by 
variations in independent variables on the dependent variable 
[13]. The most elementary variant, termed simple linear 
regression, incorporates a single independent variable and is 
mathematically represented by the equation: 

Y =  β଴ + βଵX + ε 
In this mathematical expression, Y denotes the dependent 

variable, while X signifies the independent variable. The 
parameter β0 corresponds to the y-intercept, establishing the 
baseline value when X equals zero. Meanwhile, β1 quantifies the 
gradient of the regression line, dictating the rate of change in for 
each unit variation in X. The residual term, ε, encapsulates the 
inherent randomness and unexplained variance in the model. 
When extending this framework to multiple linear regression—
wherein several independent variables influence Y—the 
formulation undergoes an expansion to accommodate additional 
predictors.: 

Y =  β଴ + βଵXଵ + βଶXଶ + βଷXଷ + ⋯ + β୬X୬ + ε 
The foremost advantage of linear regression stems from its 

straightforward nature and ease of interpretation. It offers an 
explicit depiction of variable relationships, facilitating an 
intuitive grasp of how predictor alterations impact the dependent 
variable. Moreover, linear regression efficiently processes 
extensive datasets, enabling resilient predictive modeling [14]. 
Through the least squares method, analysts determine the 
coefficients β by minimizing the residual sum of squares (RSS), 
ensuring an optimal fit to the data: 

RSS =  ෍(y୧  −  yො୧)ଶ 
In this context, yො୧ represents the estimated outcome 

corresponding to the ith observation. The extent to which the 
model aligns with the data can be quantified through the 

coefficient of determination, R², a metric that reflects how 
effectively the independent variables account for the variability 
in the dependent variable. Despite its utility, linear regression is 
not without its limitations. A major concern arises from its 
fundamental assumption that a strictly linear relationship 
governs the interplay between independent and dependent 
variables—an expectation that often falls short in practical 
applications. Moreover, the methodology presumes that 
residuals conform to a normal distribution and exhibit 
homoscedasticity, meaning their variance remains constant. 
When these assumptions are breached, the reliability of 
predictions diminishes, potentially leading to erroneous 
inferences [15].Looking forward, technological advancements 
and the evolution of data analytics are poised to influence the 
trajectory of linear regression. The increasing dominance of 
machine learning and artificial intelligence is fostering the 
emergence of more intricate modeling strategies capable of 
capturing complex, nonlinear dependencies among variables. 
Nevertheless, linear regression will continue to hold significance 
due to its foundational status in statistical methodologies and its 
inherent simplicity. Additionally, its synergy with cutting-edge 
data visualization platforms will bolster its practicality, enabling 
researchers to articulate findings in more accessible and 
insightful ways [16-17]. 

 
2. Hist Gradient Boosting Regression: 
Histogram-based Gradient Boosting Regression represents 

an advanced machine learning methodology tailored for 
predictive analytics, particularly when dealing with continuous 
target variables. This approach belongs to the domain of 
ensemble learning, wherein a collection of models—specifically 
decision trees—are aggregated to enhance predictive precision. 
The underlying principle involves constructing successive 
decision trees iteratively, with each subsequent tree striving to 
rectify the residual errors left unaddressed by its predecessors 
[18].  At its core, gradient boosting operates by systematically 
minimizing a designated loss function, which serves as a 
measure of deviation between actual and predicted values [19]. 
Mathematically, the generalized form of this loss function, 
denoted as L(y, yො), encapsulates this discrepancy and provides a 
foundation for model optimization. 

L(y, yො)  =  1
N ෍ l(y୧, yො୧

୒

୧ୀଵ
) 

In this formulation, y୧ represents the true value, while y୧ −  yො୧ signifies the estimated outcome, with N denoting the 
total count of observations. The selection of a loss function is 
contingent upon the nature of the problem at hand, with one of 
the most frequently employed options for regression tasks being 
the Mean Squared Error (MSE): 
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MSE =  1
N ෍(y୧ −  yො୧)ଶ

୒

୧ୀଵ
 

In histogram-based gradient boosting, raw data is first 
transformed into discrete bins, facilitating computational 
efficiency and optimizing memory allocation. Rather than 
operating directly on unprocessed values, the algorithm 
leverages histograms of feature distributions, streamlining the 
identification of optimal split points. This methodological shift 
accelerates model training, particularly when handling extensive 
datasets, by mitigating the computational burden associated with 
decision tree construction [20].  The training procedure for a 
histogram-based gradient boosting model unfolds through a 
sequence of steps. Initially, the algorithm assigns a baseline 
prediction to each data point, commonly represented by the 
mean of the target variable. Subsequently, an iterative 
refinement process ensues, wherein new decision trees are 
constructed to capture the residuals—quantifying the deviation 
between observed values and current estimates—thus 
progressively enhancing predictive accuracy [21]. The update 
rule for the predictions can be expressed as: 

yො (୲)  =  yො (୲ିଵ) −  ν f୲(x) 
Where yො (୲) signifies the refined prediction and yො (୲ିଵ) 

represents its predecessor, the parameter ν governs the learning 
rate, thereby dictating the extent to which each newly introduced 
tree influences the model’s overall refinement. Meanwhile,  f୲(x)corresponds to the tree trained on residuals, iteratively 
reducing error with each step.  A notable strength of histogram-
based gradient boosting lies in its capability to seamlessly 
accommodate both numerical and categorical variables, 
eliminating the necessity for extensive preprocessing. 
Furthermore, it employs regularization strategies—such as 
shrinkage and sub sampling—to mitigate over fitting, thereby 
enhancing the model’s ability to generalize effectively to novel 
data. As a regression technique, Histogram-based Gradient 
Boosting Regression stands out for its computational efficiency 
and predictive accuracy. By utilizing histograms to expedite 
computations and iteratively minimizing errors via sequential 
decision trees, it delivers strong performance across diverse 
regression scenarios [22]. 

3. XGBoost Regression: 
XGBoost, an acronym for Extreme Gradient Boosting, 

represents a formidable machine learning technique that has 
surged in prominence, particularly in regression applications. As 
a specialized implementation of gradient-boosted decision trees, 
it is meticulously engineered for both computational efficiency 
and predictive prowess. What sets XGBoost apart is its 
remarkable capacity to process vast datasets while exhibiting 
strong resistance to overfitting, rendering it a top-tier selection 
among data scientists and machine learning experts [23].  

Fundamentally, XGBoost constructs a series of decision trees in 
a sequential fashion, where each successive tree is meticulously 
optimized to rectify the residual errors of its predecessors. By 
systematically refining the loss function, this iterative approach 
persistently enhances model accuracy until either the predefined 
tree count is attained or further gains in performance diminish to 
an insignificant level. Ultimately, the model synthesizes its final 
predictions by aggregating the outputs of all constructed trees, 
thereby delivering significantly improved predictive accuracy in 
contrast to standalone decision trees [24].XGBoost distinguishes 
itself through its integration of robust regularization mechanisms 
designed to mitigate overfitting. By leveraging both L1 (Lasso) 
and L2 (Ridge) regularization, the algorithm provides users with 
precise control over model complexity. This proves especially 
advantageous in scenarios involving high-dimensional datasets 
or instances where the number of features vastly exceeds the 
sample size. Fine-tuning these regularization parameters enables 
practitioners to navigate the trade-off between bias and variance, 
ultimately fostering a more generalized and resilient model [25].  
Beyond regularization, XGBoost incorporates an advanced tree-
growing strategy known as the exact greedy algorithm, which 
not only optimizes feature selection but also adeptly manages 
missing values without imputation.  

This functionality is particularly valuable in practical 
applications, where real-world datasets often suffer from 
incomplete observations. Additionally, XGBoost harnesses 
parallel processing to expedite computation, drastically reducing 
model training durations. In the context of large-scale data, this 
acceleration transforms training times from exhaustive hours to 
mere minutes, enhancing both efficiency and scalability 
[26].Refining hyper parameters is an essential process in 
enhancing the effectiveness of XGBoost models tailored for 
regression. Crucial parameters, including the learning rate, tree 
depth, and the count of estimators, significantly influence 
predictive accuracy.  

Methods such as grid search and random search facilitate 
the discovery of optimal parameter combinations. Furthermore, 
cross-validation serves as a robust mechanism to evaluate model 
performance, ensuring strong generalization to previously 
unseen data. XGBoost regression stands as a formidable tool in 
predictive analytics, distinguished by its precision, adaptability, 
and computational efficiency. Its capacity to process vast 
datasets, mitigate overfitting through regularization, and 
inherently handle missing values cements its status as a preferred 
choice among data scientists. When combined with meticulous 
hyper parameter optimization and a deep comprehension of its 
operational principles, XGBoost exhibits remarkable efficacy 
across diverse regression scenarios, solidifying its role as an 
indispensable component of the machine learning arsenal [28]. 

 
ANALYSIS AND DISCUSSION 
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Effect of Process Parameters: 

FIGURE 1 
Figure 1 illustrates a pair plot, an insightful visualization 

technique designed to uncover interdependencies among 
multiple numerical variables. Within the matrix, each diagonal 
subplot portrays the individual distribution of a variable, 
whereas the off-diagonal subplots present scatter plots that 
delineate pair wise interactions between attributes. The dataset 
appears to encompass five primary characteristics: Inches, 
RAM, Memory, Weight, and Price. The diagonal histograms 
unveil the distributional tendencies of each variable
and Weight seem to align with a near-normal distribution, 
whereas Price skews rightward, signifying a prevalence of 
lower-cost laptops alongside a minority of high
A closer inspection of scatter plots reveals a strong correlation 
between Price and both RAM and Memory, evidenced by 
concentrated clusters and discernible upward trends, suggesting 
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A closer inspection of scatter plots reveals a strong correlation 
between Price and both RAM and Memory, evidenced by 
concentrated clusters and discernible upward trends, suggesting 

that higher memory configurations generally
prices. Conversely, the Weight vs. Price scatter plot lacks a clear 
linear trajectory, implying that weight exerts minimal influence 
on laptop pricing. Furthermore, RAM and Memory display a 
noticeable clustering pattern, indicating that sp
configurations—such as 8GB RAM paired with 256GB 
storage—are particularly prevalent. The Inches vs. Weight 
subplot unveils a positive correlation, an expected outcome 
given that larger laptops inherently possess greater mass. In 
essence, the pair plot offers a compelling visual dissection of the 
dataset’s structure, exposing key trends and dependencies. Most 
notably, RAM and Memory emerge as significant price 
determinants, while attributes like Weight and Screen Size 
exhibit comparatively weaker correlations with pricing.
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FIGURE 2 
The correlation heat map illustrated in Figure 2 

encapsulates the interrelationships among five fundamental 
laptop attributes: Inches, RAM, Memory, Weight, and Price. 
The gradient of color intensity denotes the magnitude and 
direction of these correlations—values approaching 1 re
robust positive association, while those nearing 
strong inverse relationship. Correlation values close to 0 
indicate minimal to no statistical linkage. A particularly striking 
observation is the pronounced positive correlation (0.83) 
between Inches and Weight, underscoring the tendency for 
larger laptops to be correspondingly heavier. Likewise, RAM 
exhibits a significant correlation with Price (0.75), reinforcing 
the notion that higher memory capacity generally translates to 
increased cost. Meanwhile, Memory and Price demonstrate a 
moderate correlation (0.3), implying that while storage capacity 
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ost. Meanwhile, Memory and Price demonstrate a 
moderate correlation (0.3), implying that while storage capacity 

does influence pricing, its impact is comparatively weaker than 
that of RAM. Notably, the association between Weight and 
Price is relatively weak (0.21), indicating that although heavier 
laptops may carry a higher price tag, weight is not a dominant 
cost determinant. The correlation between Memory and RAM is 
even lower (0.18), suggesting that an increase in storage does 
not necessarily align with a proportional enhancement in 
memory. The most negligible correlation emerges between 
Inches and Price (0.067), revealing that screen size exerts 
minimal influence on cost. Additionally, the weak negative 
correlation between Memory and Weight (
increased storage capacity does not inherently result in a heavier 
build. Ultimately, the heatmap underscores RAM as a principal 
driver of price, whereas attributes such as weight and screen 
dimensions exert relatively subdued effects.
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FIGURE 3. Linear Regression Model (training and testing)
Figure 3 showcases a pair of scatter plots that illustrate the 

efficacy of a linear regression model in estimating laptop prices 
using both training and testing datasets. Each plot juxtaposes 
actual laptop prices (x-axis) against predicted values (y
with a dashed diagonal line symbolizing the ideal case where 
predictions perfectly align with real prices. In the training data 
visualization (left), most data points cluster near this line, 
signifying that the model performs adequately on the dataset it 
was trained on. However, deviations become more pronounced 
in the upper price range, where predicted values begin to stray 
from actual prices. This trend hints at potential non
the relationship between price and features—an aspect that a 
basic linear model may struggle to encapsulate. Meanwhile, the 
testing data plot (right) reveals a more conspicuous departure 
from the diagonal, underscoring a decline in predictive accuracy 
when the model encounters unseen data. The spread of points 
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basic linear model may struggle to encapsulate. Meanwhile, the 
testing data plot (right) reveals a more conspicuous departure 

redictive accuracy 
when the model encounters unseen data. The spread of points 

broadens, especially for high-end laptops, indicating a greater 
margin of error. This discrepancy between training and testing 
results suggests possible overfitting, where the m
strong performance on familiar data but falters with novel 
instances. Additionally, outliers, predominantly in the premium 
price bracket, suggest difficulties in predicting high
prices, likely due to unique specifications. Such obs
imply that refining the feature set or employing a more 
sophisticated model—such as polynomial regression or 
ensemble learning—might improve predictive capabilities. In 
sum, while the model demonstrates reasonable accuracy for 
mid-range laptops, its diminished performance at higher price 
points suggests that enhancements like non
additional features, or regularization techniques could bolster 
both precision and generalization. 
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FIGURE 4.Hist Gradient Boosting Regression (training and testing)
Figure 4 illustrates scatter plots juxtaposing actual laptop 

prices (x-axis) with their predicted counterparts (y
both training and testing datasets, employing the Histogram
Based Gradient Boosting Regression (HistGBR) model. The 
diagonal dashed line symbolizes an ideal predictive scenario, 
where estimated values align precisely with real
the training dataset plot (left), data points cluster densely along 
this line, signifying an excellent model fit. Compared to the 
linear regression approach (Figure 3), HistGBR yields a far 
more concentrated distribution, exhibiting minimal divergence 
from the optimal prediction trajectory. This suggests that the 
model adeptly captures intricate relationships among input 
variables, thereby reducing predictive inaccuracies. However, 
slight deviations in the upper price spectrum hint at potential 
overfitting. The testing dataset plot (right) similarly reflects 
strong predictive alignment, with most points adhering closely 
to the diagonal. Although dispersion is observable
in the higher price range—the deviation remains notably 
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FIGURE 5.XGBoost Regression (training and testing)
Figure 5 presents an analytical depiction of the XGBoost 

Regression model’s efficacy in forecasting laptop prices, with 
the training dataset visualized on the left and the testing dataset 
on the right. The horizontal axis delineates actual laptop prices, 
whereas the vertical axis reflects the model’s predicted outputs. 
A dashed diagonal line serves as the ideal benchmark
flawlessly calibrated model would align all data points 
precisely. In the training set visualization, the model exhibits an 
exceptionally tight fit, with predicted values clustering along the 
diagonal, signifying a highly precise learning process. Relative 
to preceding models such as Linear Regression (Figure 3) and 
HistGBR (Figure 4), XGBoost enhances predictive accuracy by 

International Journal of Robotics and Machine Learning Technologies 

, “Comparative Analysis of Machine Learning Models for Laptop Price Prediction An Evaluation of Linear Regression, Histo
Boost Approaches” International Journal of Robotics and Machine Learning Technologies., 2025, vol. 1, no. 1, pp. 1

9 

Hist Gradient Boosting Regression (training and testing) 
Figure 4 illustrates scatter plots juxtaposing actual laptop 
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constrained relative to the linear regression model. This 
indicates that HistGBR generalizes more effectively, mitigating 
overfitting by accommodating non-
feature space. A fundamental advantage of HistGBR over linear 
regression lies in its proficiency at discerning complex pricing 
patterns and adapting to fluctuations in laptop specifications. 
The concentrated clustering across both 
model’s robustness and predictive precision over diverse price 
ranges. Nonetheless, anomalies in the premium segment imply 
that high-end or niche models might still pose prediction 
challenges. Overall, the HistGBR model markedly surpa
linear regression, offering superior accuracy, enhanced 
generalization, and a refined capability to model complex 
pricing behaviors. Further advancements, such as 
hyperparameter optimization and feature engineering, could 
enhance its predictive efficacy, particularly in addressing the 
observed discrepancies in high-priced laptops.
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Figure 5 presents an analytical depiction of the XGBoost 

Regression model’s efficacy in forecasting laptop prices, with 
the training dataset visualized on the left and the testing dataset 
on the right. The horizontal axis delineates actual laptop prices, 

hereas the vertical axis reflects the model’s predicted outputs. 
A dashed diagonal line serves as the ideal benchmark—where a 
flawlessly calibrated model would align all data points 
precisely. In the training set visualization, the model exhibits an 

ionally tight fit, with predicted values clustering along the 
diagonal, signifying a highly precise learning process. Relative 
to preceding models such as Linear Regression (Figure 3) and 
HistGBR (Figure 4), XGBoost enhances predictive accuracy by 

further consolidating data points around the optimal trajectory, 
effectively minimizing prediction deviations. 

This refinement underscores XGBoost’s ability to decipher 
intricate feature interdependencies, rendering it particularly 
adept at capturing variations in laptop specifications. However, 
the model’s near-perfect conformity to training data raises the 
specter of over fitting, wherein it might have internalized 
dataset-specific patterns excessively. In the testing dataset 
visualization, while generalization 
dispersion emerges—most prominently at elevated price levels. 
Although the majority of predictions adhere closely to the 
reference line, discrepancies become more pronounced in the 
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premium segment, hinting at the model’s struggle with high-end 
pricing dynamics. This pattern suggests that despite XGBoost’s 
proficiency in mapping complex pricing structures, additional 
refinements may be necessary to fortify its resilience on unseen 
data. Compared to HistGBR (Figure 4), XGBoost demonstrates 
a stronger tendency toward over fitting, evident in the training 
data’s compact clustering versus the broader scatter observed in 
testing. This reflects an inherent trade-off: boosting algorithms 

excel in capturing training data intricacies but often necessitate 
additional regularization strategies to bolster generalization. 
Overall, XGBoost surpasses linear regression and is at least on 
par with, if not marginally superior to, HistGBR in predictive 
accuracy—especially for mid-range pricing. Nevertheless, 
further refinements in feature selection, hyperparameter tuning 
and cross-validation could augment its robustness, particularly 
in forecasting high-end laptop prices with greater precision. 
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Table 1 provides a comparative evaluation of three 

regression models—Linear Regression (LR), Hist Gradient 
Boosting Regression (HGBR), and XGBoost Regression 
(XGBR)by analyzing their predictive performance on both 
training and testing datasets. The assessment employs key 
statistical indicators, including R² score, Explained Variance 
Score (EVS), Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), Mean Absolute Error (MAE), Maximum Error, 
Mean Squared Log Error (MSLE), and Median Absolute Error 
(MedAE). Collectively, these metrics gauge the models' 
accuracy, reliability, and error dispersion. Notably, XGBoost 
Regression (XGBR) achieves the highest R² score (0.93559), 
signifying superior variance explanation in laptop price 
prediction—substantially outperforming HGBR (0.83375) and 
LR (0.59155). This underscores the efficacy of boosting 
algorithms over traditional linear regression. A similar trend is 
evident in the Explained Variance Score (EVS), reinforcing 
XGBoost’s ability to capture intricate patterns.  

The MSE and RMSE further corroborate this dominance, 
with XGBoost displaying the lowest MSE (87,139,734.5) and 
RMSE (9,334.9), indicative of minimal prediction deviations. 
Conversely, Linear Regression exhibits a markedly higher 
RMSE (23,506.3), reflecting its inferiority. Additionally, 

XGBoost minimizes the Mean Absolute Error (MAE) at 
5,969.8, affirming its precision. The Maximum Error metric 
further emphasizes its robustness, as XGBoost’s worst-case 
deviation (60,291.2) is significantly less severe than LR’s 
(153,528.0), signifying greater predictive stability. When 
evaluated on unseen data, XGBoost sustains its lead yet 
experiences an accuracy decline, with its R² dropping to 
0.77524—still surpassing HGBR (0.71715) and LR (0.68449). 
This reduction signals a degree of overfitting, yet XGBoost 
retains superior generalization. The lowest MSE 
(336,033,751.9) and RMSE (18,331.2) further reinforce its 
reliability, though the RMSE increase highlights diminished 
precision on novel data. Nonetheless, its MAE (11,593.2) 
remains lower than LR’s (16,241.5), validating its predictive 
consistency. In summary, XGBoost surpasses both LR and 
HGBR across all evaluated metrics, rendering it the optimal 
choice for forecasting laptop prices. However, refining hyper 
parameters and implementing cross-validation strategies may 
further enhance its generalizability. XGBoost Regression 
(XGBR) emerges as the most effective model for predicting 
laptop prices, surpassing both Linear Regression (LR) and H is t 
Gradient Boosting Regression (HGBR). It secures the highest R² 
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values—0.93559 for training and 0.77524 for testing—
underscoring its robust capacity to encapsulate price variations.  

Additionally, its Mean Squared Error (MSE) and Root 
Mean Squared Error (RMSE) are the lowest among the models, 
highlighting minimal disparity between actual and predicted 
prices. Although HGBR demonstrates greater accuracy than LR, 
its predictive precision remains inferior to XGBR, especially 
when generalizing to unseen data. Linear Regression, 
constrained by its inability to model non-linear price 
dependencies, exhibits relatively weak performance with R² 
values of 0.59155 for training and 0.68449 for testing. The 
escalation in RMSE and MSE on test data signals potential 
overfitting, particularly in more complex models. In summary, 
while XGBR stands as the most dependable choice for price 
estimation, further refinements are necessary to optimize its 
generalization capability. 
CONCLUSION 

In the contemporary, tech-centric marketplace, precisely 
forecasting laptop prices has become a crucial endeavor for both 
consumers seeking optimal purchases and manufacturers aiming 
for strategic pricing. The vast array of models, each boasting 
distinct specifications and feature sets, necessitates the 
development of robust predictive models that empower buyers 
with well-informed choices while enabling manufacturers to 
maintain a competitive edge.  A meticulous examination of 
three regression models—Linear Regression (LR), Histogram 
Gradient Boosting Regression (HGBR), and XGBoost 
Regression (XGBR)—yields profound insights into their 
efficacy in price prediction. Among them, XGBoost distinctly 
outperforms, exhibiting remarkable accuracy with an R² score 
reaching 0.93559 on training data and 0.77524 on testing data.  

This superior performance stems from its adeptness in 
deciphering intricate, non-linear correlations between diverse 
laptop specifications and their respective market values.The 
comparative examination underscores that, despite each model 
possessing distinct strengths, conventional Linear Regression 
struggled to encapsulate the nuanced interdependencies between 

attributes and pricing, leading to elevated error margins and 
diminished predictive precision. While HGBR demonstrated a 
marked improvement over Linear Regression, its efficacy 
remained inferior to that of XGBoost. The notably reduced 
Mean Squared Error (MSE) and Root Mean Squared Error 
(RMSE) associated with XGBoost further solidify its dominance 
in predictive accuracy and dependability. Nevertheless, certain 
challenges surfaced, necessitating further scrutiny. The 
observable drop in performance metrics from training to testing 
phases implies that even XGBoost, the most proficient model, is 
not impervious to overfitting. This underscores the critical need 
for meticulous hyper parameter tuning and robust validation 
methodologies to bolster its generalization capacity—an aspect 
of heightened importance when forecasting prices for premium 
laptops, where variability is often pronounced. Looking ahead, 
these findings bear significant ramifications for both real-world 
implementations and prospective scholarly inquiry. The 
demonstrated efficacy of XGBoost in forecasting prices 
underscores the potency of ensemble learning methods in 
unraveling the intricate dynamics of technology valuation.  

Advancements moving forward may prioritize refined 
feature engineering, meticulous hyper parameter tuning, and the 
integration of supplementary variables—such as brand 
perception and prevailing market tendencies—to augment 
predictive precision. These refinements could bolster the 
model’s capability to generate highly accurate price estimations 
across diverse laptop categories. The insights derived from this 
investigation hold substantial value for key players within the 
laptop industry, spanning manufacturers, retailers, and 
consumers, by facilitating more strategic pricing decisions and 
well-informed purchasing choices. The approaches and 
conclusions delineated in this study establish a robust 
groundwork for crafting even more sophisticated price 
prediction frameworks, thereby fostering heightened market 
efficiency and enhancing overall consumer satisfaction within 
the competitive landscape of the laptop sector. 
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