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The fabrication of advanced robots represents a pivotal intersection of cutting-edge 
materials science, artificial intelligence, and innovative manufacturing techniques. These 
robots are designed to perform complex tasks autonomously, from industrial automation 
and healthcare assistance to space exploration and disaster response. With breakthroughs 
in AI, 3D printing, and nanotechnology, modern robots are becoming more intelligent, 
agile, and capable than ever before. However, the rise of these machines also raises 
important questions about societal impacts, ethical considerations, and job displacement. 
The ongoing advancements in robot fabrication promise to reshape industries and redefine 
the role of automation in human life. 

The significance of research in the fabrication of advanced robots lies in its 
transformative potential across numerous sectors. It drives innovation in automation, 
improving efficiency and precision in industries like manufacturing, healthcare, and 
logistics. Advanced robots can address complex societal challenges, such as providing 
personalized healthcare, performing dangerous tasks, and enhancing disaster recovery. 
Research also enables the integration of cutting-edge technologies like AI, 
nanotechnology, and materials science, pushing the boundaries of robotics capabilities. 
Furthermore, it tackles ethical, social, and economic implications, guiding responsible 
innovation to ensure positive societal impact while mitigating job displacement and other 
risks. 

The fabrication of advanced robots involves a multi-disciplinary methodology 
combining materials science, manufacturing techniques, and artificial intelligence (AI). 
The process starts with designing robot structures using lightweight, durable materials like 
composites and metals. Additive manufacturing (3D printing) and precision machining are 
employed to create complex components. Sensors, actuators, and processors are integrated 
to enable movement and functionality. AI and machine learning models are embedded for 
autonomous decision-making, adapting robot behaviors to dynamic environments. Testing 
and iterative prototyping ensure performance, reliability, and safety. Finally, robots 
undergo optimization for energy efficiency, user interaction, and task-specific capabilities 
in their intended applications. 
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Introduction 
The evolution of robotics has ushered in a new era of 

technological advancements that significantly impact various 
sectors, including manufacturing, healthcare, agriculture, and 
even daily life. This introduction delves into the key aspects of 
robotic fabrication, highlighting its significance, the 
technologies involved, and the implications for the future.[1]  As 
industries strive for greater efficiency and productivity, 

advanced robotics has become essential. Robots can operate in 
environments where humans may face challenges, such as 
extreme temperatures, hazardous materials, or confined spaces. 
Furthermore, they can perform repetitive tasks with consistency, 
reducing errors and increasing output. The integration of robots 
into production lines has transformed manufacturing processes, 
enabling companies to adopt just-in-time production methods 
and reduce costs. [2]Beyond manufacturing, advanced robots are 
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increasingly prevalent in healthcare, where they assist in 
surgeries, automate drug delivery, and enhance patient care. In 
agriculture, they are utilized for precision farming, enabling 
farmers to optimize crop yields and minimize resource use.  

In daily life, robots are becoming common in homes as 
personal assistants, cleaning devices, and security systems. The 
versatility and adaptability of advanced robots highlight their 
growing importance across diverse sectors. [3] Advanced robots 
rely on microelectronic components and sensors to perceive their 
environment. These include cameras, LIDAR, ultrasonic 
sensors, and touch sensors that provide real-time data for 
navigation and task execution. The integration of these sensors 
allows robots to Actuators are essential for robotic movement, 
converting electrical energy into mechanical motion. Advanced 
control systems, often based on AI algorithms, enable precise 
control of these actuators, allowing for smooth and accurate 
movements. Robotics can also incorporate advanced features 
like haptic feedback, which provides tactile sensations to 
users.[4] Despite the advancements in robotic fabrication, 
several challenges remain.  

One significant hurdle is ensuring safety in human-robot 
interactions. As robots become more integrated into workplaces 
and homes, developing robust safety protocols and standards is 
crucial to prevent accidents and ensure user trust. Additionally, 
the complexity of programming and controlling advanced robots 
poses challenges.[5] While AI and machine learning have made 
significant strides, developing algorithms that enable robots to 
function effectively in dynamic and unstructured environments 
is still an ongoing area of research. Moreover, the need for 
extensive training data for machine learning models can limit 
their applicability in certain situations. Another challenge lies in 
the cost of advanced robotic systems. While prices have 
decreased over time, the initial investment in robotics can still be 
substantial, especially for small and medium-sized enterprises. 
Finding cost-effective solutions that provide a good return on 
investment is essential for broader adoption.[6] The future of 
advanced robotics holds immense potential.  

As technologies continue to advance, we can expect to see 
robots that are even more capable, intelligent, and versatile. 
Collaborative robots, or cobots, designed to work alongside 
humans, will become more common in workplaces, enhancing 
productivity and safety. The integration of the Internet of Things 
(IoT) with robotics will enable seamless communication 
between devices, leading to smarter manufacturing systems and 
more efficient operations. This interconnectedness will allow for 
real-time data analysis and decision-making, further optimizing 
processes.[7] In the healthcare sector, advancements in robotic 
surgery and telepresence will enhance patient care and 
accessibility.  

Robots may perform complex procedures with high 
precision, reducing recovery times and improving outcomes. 
Additionally, advancements in robotic exoskeletons and 

prosthetics will enhance mobility and independence for 
individuals with disabilities. As robotics continues to evolve, 
ethical considerations will also come to the forefront. The 
implications of automation on employment, privacy, and 
security will require careful examination and regulation to 
ensure that the benefits of advanced robotics are distributed 
equitably across society.[8] As we continue to explore new 
materials, technologies, and methodologies, the capabilities of 
robots will expand, leading to transformative changes across 
industries and everyday life.  

By addressing the challenges and embracing the 
opportunities presented by advanced robotics, we can unlock 
new possibilities for efficiency, productivity, and human 
enhancement, ultimately shaping a future where robots play an 
integral role in our lives. The journey of robotic fabrication is 
ongoing, and its impact will undoubtedly resonate for 
generations to come.[9] The fabrication of advanced robots has 
significantly evolved over the past few decades, revolutionizing 
industries and daily life through automation, precision, and 
intelligence.  

The journey of robotic fabrication began with simple 
mechanical automata, but the real transformation occurred in the 
mid-20th century with the advent of programmable machines. 
Today, the fabrication of advanced robots integrates multiple 
disciplines, including mechanical engineering, electronics, 
artificial intelligence (AI), and material sciences, to create highly 
sophisticated machines capable of performing complex tasks 
autonomously.[10] The growing demand for automation in 
industries such as manufacturing, healthcare, space exploration, 
defense, and service sectors has accelerated the research and 
development of intelligent robotic systems.The fabrication of 
modern robots requires a systematic approach that involves 
meticulous planning, designing, prototyping, and testing.  

The process begins with conceptualization, where engineers 
define the robot's purpose, functionality, and environmental 
adaptability. Material selection plays a crucial role in 
fabrication, as lightweight and durable materials like carbon 
fiber, titanium alloys, and advanced polymers enhance robot 
efficiency and longevity. Furthermore, additive manufacturing 
techniques, such as 3D printing, have revolutionized the 
fabrication process by enabling rapid prototyping and complex 
structural designs that were previously unattainable through 
conventional manufacturing methods. [11] One of the key 
breakthroughs in robotic fabrication is the development of 
highly flexible and intelligent robotic arms, which have become 
indispensable in industrial automation. These robotic arms, 
equipped with advanced sensors and actuators, enable high-
precision assembly, welding, and material handling in factories.  

Additionally, the miniaturization of electronic components 
has paved the way for the creation of micro-robots used in 
medical applications, such as minimally invasive surgeries and 
targeted drug delivery.[12] The advancement of soft robotics, 
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which incorporates flexible and bio-inspired materials, has 
further expanded the scope of robotic applications by enabling 
safer human-robot interactions and delicate object manipulation. 
These innovations have led to the development of humanoid 
robots, autonomous drones, and robotic exoskeletons that assist 
individuals with mobility impairments. The fabrication of 
advanced robots also involves sophisticated software and control 
systems that ensure efficient communication between hardware 
components.[13] Robotic operating systems (ROS), real-time 
control algorithms, and wireless communication protocols 
facilitate seamless coordination and task execution.  

The integration of computer vision and advanced sensor 
technologies, such as LiDAR, infrared, and ultrasonic sensors, 
enables robots to perceive their surroundings and navigate 
complex environments autonomously. The incorporation of 
cloud computing and Internet of Things (IoT) further enhances 
robotic capabilities by allowing remote monitoring, predictive 
maintenance, and collaborative functionalities across multiple 
robotic systems.[14] Despite significant progress, challenges 
persist in robotic fabrication, including high production costs, 
energy efficiency concerns, and ethical considerations regarding 
job displacement and privacy. Researchers and engineers 
continuously strive to address these challenges by developing 
cost-effective fabrication techniques, energy-efficient power 
sources, and ethical guidelines for robotic deployment.  

The future of robotic fabrication holds immense potential, 
with ongoing advancements in quantum computing, bio-hybrid 
robotics, and self-repairing materials expected to redefine the 
capabilities of autonomous systems.[15] As robots become more 
integrated into society, their fabrication will continue to evolve, 
unlocking new possibilities in industries and enhancing human 
quality of life. The fabrication of advanced robots represents a 
convergence of cutting-edge technologies that drive innovation 
across multiple domains. From industrial automation to 
healthcare and space exploration, advanced robots play a pivotal 
role in shaping the future of human civilization. Adari et al. has 
been published for their work on applying artificial neural 
networks to fiber-reinforced polymer composites, evaluated 
using the ARAS method.[16] 
MATERIAL AND METHOD 

Alternative:  
R-Alpha: R-Alpha represents the excess return of an 

investment compared to a benchmark index, adjusting for risk. It 
indicates the manager's performance and effectiveness in 
generating returns beyond market expectations. 

R-Beta:R-Beta is a statistical measure indicating the 
sensitivity of an asset's returns relative to market movements. It 
helps assess risk and volatility, guiding investment strategies and 
portfolio management decisions. 

R-Gamma: R-Gamma is a statistical measure used in 
finance and risk management to assess the sensitivity of an 
asset’s price to changes in interest rates, enhancing portfolio 
optimization and risk assessment strategies. 

R-Delta:R-Delta represents the change in resistance, often 
used in electrical and engineering contexts. It indicates 
variations in resistance under different conditions, crucial for 
assessing performance, reliability, and system behavior. 

R-Epsilon: R-Epsilon is a parameter used in various 
scientific and engineering fields, representing a threshold or 
limit. It often denotes the precision or accuracy required for 
measurements and calculations in complex systems. 
Evaluation preference: 

Precision (B1): Precision (B1) refers to the accuracy and 
consistency of measurements or actions. High precision ensures 
reliable outcomes in scientific, engineering, and manufacturing 
contexts, minimizing errors and enhancing overall quality and 
performance. 

Speed (B2): Speed (B2) measures the rate at which a 
process or action occurs. In various contexts, it influences 
efficiency, performance, and user experience, impacting 
decision-making and overall productivity in systems. 

Durability (B3): Durability (B3) refers to a product's ability 
to withstand wear, pressure, or damage over time. It is crucial in 
assessing quality, longevity, and reliability in various 
applications and environments. 

Energy Efficiency (B4):  Energy efficiency (B4) refers to 
using less energy to provide the same service. It reduces energy 
consumption, lowers costs, and minimizes environmental 
impact, promoting sustainable practices and enhancing overall 
energy management. 
WASPAS METHOD 

In decision-making processes, particularly in complex 
environments such as project management, resource allocation, 
and strategic planning, decision-makers often face multiple 
criteria that must be considered simultaneously.[17] Traditional 
methods like WSM and WPM have their strengths but also 
limitations. WSM treats all criteria linearly and assumes 
independence among them, while WPM can sometimes be less 
intuitive for some decision-makers. The WASPAS method was 
developed to leverage the advantages of both approaches while 
mitigating their drawbacks. In MCDM problems, alternatives are 
assessed based on various criteria, each of which may have 
different units of measurement and varying levels of 
importance.[18] The WASPAS method facilitates this by 
assigning weights to each criterion, allowing for a more nuanced 
evaluation of alternatives.  
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WASPAS has been successfully applied in various domains, 
such as project selection, supplier evaluation, environmental 
impact assessment, and resource allocation. Its adaptability to 
different contexts makes it a valuable tool for decision-makers 
facing complex scenarios with multiple competing criteria. In 
summary, the WASPAS method offers a systematic approach to 
multi-criteria decision-making, blending the strengths of both 
additive and multiplicative methods.[19] By carefully weighing 

criteria and evaluating alternatives, it enables informed and 
effective decision-making across various fields. Its versatility 
makes it applicable across various fields, enabling decision-
makers to make informed choices that consider both quantitative 
and qualitative factors. However, users should remain mindful of 
the method's limitations and strive for careful implementation to 
achieve optimal results.[20] 

 
RESULT AND DISCUSSION 
TABLE 1.Fabrication of Advanced Robots 

Robot Model Precision (B1) Speed (B2) Durability (B3) Energy Efficiency (B4) 
R-Alpha 85.00000 90.00000 80.00000 75.00000 
R-Beta 88.00000 85.00000 78.00000 80.00000 
R-Gamma 92.00000 87.00000 85.00000 77.00000 
R-Delta 86.00000 89.00000 82.00000 83.00000 
R-Epsilon 90.00000 84.00000 79.00000 85.00000 

 
The Robot Model assesses five alternatives (R-Alpha, R-

Beta, etc.) based on four performance criteria: Precision (B1), 
Speed (B2), Durability (B3), and Energy Efficiency (B4). Each 
alternative is assigned a score from 0 to 100 for these criteria. 
For instance, R-Gamma excels in Precision (92) and Durability 
(85), suggesting it is highly accurate and robust. Conversely, R-

Beta, while slightly behind in Precision (88) and Speed (85), 
still maintains competitive scores across all criteria. This 
performance matrix allows for a comprehensive comparison of 
the robots, aiding in the decision-making process to choose the 
best option based on specific needs. 
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For instance, R-Gamma excels in Precision (92) and Durability 
(85), suggesting it is highly accurate and robust. Conversely, R-
Beta, while slightly behind in Precision (88) and Speed (85), 
still maintains competitive scores across all criteria. This 

performance matrix allows for a comprehensive comparison of 
the robots, aiding in the decision-making process to choose the 
best option based on specific needs. 

 
TABLE 2.Performance value 

 
Performance value 

R-Alpha 0.92391 1.00000 0.97500 1.00000 
R-Beta 0.95652 0.94444 1.00000 0.93750 

R-Gamma 1.00000 0.96667 0.91765 0.97403 
R-Delta 0.93478 0.98889 0.95122 0.90361 

R-Epsilon 0.97826 0.93333 0.98734 0.88235 
 

The performance values for each alternative (R-Alpha, R-
Beta, etc.) reflect their effectiveness across four criteria. These 
values, ranging from 0 to 1, indicate the relative performance of 
each alternative, with 1 being the best possible score. For 
example, R-Alpha scores very high (up to 1.0) in two criteria, 
showcasing its strong performance. In contrast, R-Epsilon, 

while generally performing well, has lower scores, particularly 
in the last criterion. By analyzing these performance values, 
decision-makers can assess how well each alternative meets the 
established criteria, facilitating comparisons and informed 
selections based on the highest performance metrics. 
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TABLE 3.Weight 
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Weight 

R-Alpha 0.25 0.25 0.25 0.25 
R-Beta 0.25 0.25 0.25 0.25 

R-Gamma 0.25 0.25 0.25 0.25 
R-Delta 0.25 0.25 0.25 0.25 

R-Epsilon 0.25 0.25 0.25 0.25 
The weights in the given matrix represent the importance 

assigned to each criterion for the alternatives (R-Alpha, R-Beta, 
etc.). Here, each criterion has an equal weight of 0.25 across all 
alternatives, indicating that all criteria are considered equally 
important in the decision-making process. This uniform 
weighting allows for a straightforward evaluation, where each 

alternative is judged based on the same level of significance for 
each criterion. By applying these equal weights, the decision-
makers ensure a balanced assessment, preventing any single 
criterion from disproportionately influencing the overall 
evaluation of the alternatives. 

 
TABLE 4.Weighted normalized decision matrix(WSM) 

Weighted normalized decision matrix 
WSM 

R-Alpha 0.23098 0.25000 0.24375 0.25000 
R-Beta 0.23913 0.23611 0.25000 0.23438 

R-Gamma 0.25000 0.24167 0.22941 0.24351 
R-Delta 0.23370 0.24722 0.23780 0.22590 

R-Epsilon 0.24457 0.23333 0.24684 0.22059 
 

Table 4 presents the Weighted Normalized Decision 
Matrix, a crucial component of the WASPAS (Weighted 
Aggregated Sum Product Assessment) method. This matrix 
displays the performance of five alternatives R-Alpha, R-Beta, 
R-Gamma, R-Delta, and R-Epsilon evaluated across four 
criteria. The values in the matrix are normalized and weighted, 
ensuring that all criteria are comparable despite differences in 
units or scales, and reflect the relative importance of each 
criterion. In this matrix, each value represents the weighted 
normalized score of an alternative for a specific criterion. 
Higher values indicate better performance concerning that 
criterion. For instance, R-Gamma shows the highest score 

(0.25000) in the first criterion, suggesting strong performance in 
that area. Similarly, R-Alpha excels in the second and fourth 
criteria with scores of 0.25000, indicating consistent strength. 
On the other hand, R-Epsilon has lower values, particularly in 
the fourth criterion (0.22059), reflecting weaker performance. 
The matrix helps in calculating both the Weighted Sum Model 
(WSM) and the Weighted Product Model (WPM) scores, which 
are combined to determine the overall performance of each 
alternative. This balanced approach supports objective decision-
making by considering both additive and multiplicative 
evaluations.

 
TABLE 5.Weighted normalized decision matrix(WPM) 

Weighted normalized decision matrix 
WPM 

R-Alpha 0.98041 1.00000 0.99369 1.00000 
R-Beta 0.98895 0.98581 1.00000 0.98399 
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R-Gamma 1.00000 0.99156 0.97874 0.99344 
R-Delta 0.98328 0.99721 0.98758 0.97498 

R-Epsilon 0.99452 0.98290 0.99682 0.96919 

 
 

The weighted normalized decision matrix for WPM shows 
the relative performance of five categories R-Alpha, R-Beta, R-
Gamma, R-Delta, and R-Epsilon across four criteria. R-Alpha 
scores highly in most criteria, with values close to or equal to 
1.000, indicating strong performance. R-Beta also performs well 
but has slightly lower scores, particularly in the last criterion 

(0.98399). R-Gamma excels in the first criterion (1.00000) but 
has a lower score in the third criterion (0.97874). R-Delta and 
R-Epsilon show more variability, with lower scores in certain 
criteria, particularly in the last criterion, where R-Epsilon scores 
0.96919. 

 
TABLE 6.WASPAS Coefficient 

 Preference Score Preference Score lambda WASPAS Coefficient 
 WSN WPM   

R-Alpha 0.97473 0.97422 0.5 0.97448 
R-Beta 0.95962 0.95931  0.95947 

R-Gamma 0.96458 0.96412  0.96435 
R-Delta 0.94463 0.94413  0.94438 

R-Epsilon 0.94532 0.94439  0.94485 
 

The table compares the preference scores (WSN and WPM) 
and the WASPAS coefficient for five categories: R-Alpha, R-
Beta, R-Gamma, R-Delta, and R-Epsilon. R-Alpha has the 
highest scores, with a WSN of 0.97473, a WPM of 0.97422, and 
a WASPAS coefficient of 0.97448. R-Beta follows with slightly 
lower scores, with a WASPAS coefficient of 0.95947. R-

Gamma ranks next with a coefficient of 0.96435. R-Delta and 
R-Epsilon have the lowest preference scores, both around 0.944, 
indicating lower performance compared to the others. The 
lambda value of 0.5 for R-Alpha reflects equal weight given to 
WSN and WPM. 

 
TABLE 7.RANK 

RANK 
R-Alpha 1 
R-Beta 3 
R-Gamma 2 
R-Delta 5 
R-Epsilon 4 

 
The rankings for the categories R-Alpha, R-Beta, R-

Gamma, R-Delta, and R-Epsilon indicate their relative positions 
or importance. R-Alpha holds the lowest rank of 1, suggesting it 

is less prominent compared to the others. R-Beta follows with a 
rank of 3, showing moderate significance. R-Gamma ranks just 
below R-Beta with a score of 2. R-Delta, with the highest rank 
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of 5, stands out as the most important or influential category. R
Epsilon, with a rank of 4, is positioned between R
 

FIGURE 3.Preference score (WSM &WPM) 
Figure 3 presents the preference scores calculated using the 

Weighted Sum Model (WSM) and Weighted Product Model 
(WPM) under the WASPAS (Weighted Aggregated Sum 
Product Assessment) method. The graph compares the 
performance of five different alternatives, labeled as R
R-Beta, R-Gamma, R-Delta, and R-Epsilon. The preference 
scores for WSM are represented in blue, while those for WPM 
are shown in red. The data suggests that R-Alpha has the highest 
preference score in both models, followed by R
Gamma, which exhibit similar trends. Meanwhile, R
R-Epsilon have lower scores, indicating their relatively lower 
preference. The use of cone-shaped bars emphasizes the 
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of 5, stands out as the most important or influential category. R-
Epsilon, with a rank of 4, is positioned between R-Delta and R-

Beta, reflecting higher importance than the lower
categories but less than R-Delta. 

Figure 3 presents the preference scores calculated using the 
Weighted Sum Model (WSM) and Weighted Product Model 
(WPM) under the WASPAS (Weighted Aggregated Sum 
Product Assessment) method. The graph compares the 

labeled as R-Alpha, 
Epsilon. The preference 

scores for WSM are represented in blue, while those for WPM 
Alpha has the highest 

preference score in both models, followed by R-Beta and R-
Gamma, which exhibit similar trends. Meanwhile, R-Delta and 

Epsilon have lower scores, indicating their relatively lower 
shaped bars emphasizes the 

differences in scores across the alternatives. The preference 
scores are closely clustered, ranging between approximately 
0.925 and 0.975, highlighting minimal variation between WSM 
and WPM rankings. The similarity in score trends for both 
models suggests a degree of consistency in preference 
evaluation under the WASPAS method. H
variations in height indicate potential differences in sensitivity 
between WSM and WPM. Overall, Figure 3 effectively 
visualizes the preference ranking of alternatives, demonstrating 
the comparative assessment of decision
multi-criteria decision analysis. 

 

 

Preference Score WSN
Preference Score WPM

WASPAS Coefficient
R-Alpha
R-Beta
R-Gamma
R-Delta
R-Epsilon

Nagababu.  K, “Innovative Fabrication of Advanced Robots Using the Waspas Method A New Era in Robotics Engineering” International 
http://dx.doi.org/10.55124/jmms.v1i1.235 

g higher importance than the lower-ranked 

 

differences in scores across the alternatives. The preference 
osely clustered, ranging between approximately 

0.925 and 0.975, highlighting minimal variation between WSM 
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Figure 4 illustrates the WASPAS coefficient distribution 
among five alternatives: R-Alpha, R-Beta, R-Gamma, R-Delta, 
and R-Epsilon. The pie chart visually represents the proportion 
of each alternative's contribution to the overall decision-making 
process under the WASPAS method. Each segment corresponds 
to a specific alternative, with distinct colors differentiating 
them. The sizes of the segments indicate the relative preference 
levels of the alternatives based on the WASPAS coefficient. A 
larger segment suggests a higher preference, while a smaller 
segment signifies a lower ranking. The even distribution of 
sections implies that the alternatives hold comparable 
importance in the evaluation, with slight variations among them. 

This visualization effectively summarizes the overall decision-
making results by consolidating the weighted sum model 
(WSM) and weighted product model (WPM) into a single 
coefficient. The WASPAS method, which integrates both WSM 
and WPM, enhances decision reliability by balancing additive 
and multiplicative assessments. From the chart, it can be 
inferred that no single alternative overwhelmingly dominates the 
selection process, indicating a balanced evaluation. This 
graphical representation is useful for stakeholders and decision-
makers in comparing alternatives and understanding the final 
rankings based on multi-criteria decision analysis. 

 

 
FIGURE 5. Rank 

Figure 5 presents the ranking of five alternatives R-Alpha, 
R-Beta, R-Gamma, R-Delta, and R-Epsilon based on the 
WASPAS method. The bar chart visually represents the rank 
assigned to each alternative, where a lower rank indicates a 
higher preference. R-Alpha holds the first rank, signifying it as 
the most preferred alternative, while R-Delta is ranked the 
lowest at position five, making it the least favorable option. R-
Beta, R-Gamma, and R-Epsilon are positioned in between, 
ranked second, third, and fourth, respectively. The ranking 
reflects the overall performance of each alternative based on the 
combined evaluations of the Weighted Sum Model (WSM) and 

Weighted Product Model (WPM) within the WASPAS method. 
The significant difference in ranking between R-Alpha and R-
Delta suggests that R-Alpha outperforms the other alternatives 
considerably, while R-Delta and R-Epsilon have relatively 
lower preference scores. The chart provides a clear and concise 
comparative analysis, helping decision-makers identify the most 
suitable alternative based on multi-criteria decision analysis. 
The WASPAS method effectively balances additive and 
multiplicative criteria, ensuring a robust ranking system that 
considers both weighted sums and product-based evaluations. 

 
 
CONCLUSION 

The fabrication of advanced robots represents one of the 
most transformative technological frontiers of the 21st century, 
offering profound implications across industries, societies, and 
even existential questions about human roles in an increasingly 
automated world. The complexity of creating such robots lies 

not only in technological advancements but also in ethical, 
social, and economic dimensions. This conclusion will 
summarize the key aspects of advanced robot fabrication, 
touching on the materials, techniques, and technologies 
involved, the roles these robots will play, and the implications 
for society and the future.The materials and techniques used in 
fabricating advanced robots have evolved significantly in recent 
years. Modern robots require sophisticated materials that 
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balance durability, flexibility, and functionality. Lightweight 
metals like titanium and aluminum, combined with high-
strength polymers and composite materials, form the structural 
backbone of many advanced robots. These materials provide the 
necessary strength-to-weight ratio for robots designed for tasks 
that require both agility and durability, such as robots used in 
military operations, search-and-rescue missions, or planetary 
exploration.In terms of manufacturing techniques, additive 
manufacturing (or 3D printing) has revolutionized how robots 
are built.  

Traditional machining techniques often required expensive, 
time-consuming processes to create parts with precise 
geometries. With 3D printing, however, complex robot 
components can now be printed in a matter of hours, allowing 
for rapid prototyping and iterative design improvements. This 
technology enables the creation of components with intricate 
internal structures that were previously impossible to fabricate 
through conventional means. The miniaturization of robotic 
components has also been facilitated by advances in 
nanotechnology. Nano-scale materials and devices are being 
integrated into robots to improve performance in areas such as 
sensors, actuators, and energy storage. For instance, robots built 
for biomedical purposes, such as nanobots used in targeted drug 
delivery, leverage advances in nonmaterial’s for precise and 
efficient functionality. Moreover, the integration of artificial 
intelligence (AI) into robotics requires specialized 
computational materials like neuromorphic chips, which mimic 
the brain’s neural networks. These chips allow robots to process 
large volumes of data in real-time, making them capable of 
complex decision-making tasks such as navigating 
unpredictable environments or interacting with humans in social 
settings.AI and machine learning (ML) are the cornerstone 
technologies driving the next generation of advanced robots.  

The capacity for a robot to learn, adapt, and respond to its 
environment autonomously transforms it from a mere tool into 
an intelligent system. While traditional robots operate based on 
pre-programmed routines, advanced robots equipped with AI 
can evolve their behavior based on new data inputs. Deep 
learning, a subset of AI, enables robots to recognize patterns and 
make predictions, which is particularly useful in fields like 
healthcare, where diagnostic robots can analyze medical data 
and recommend treatment options. In manufacturing, AI-driven 
robots can autonomously optimize production processes by 
analyzing machine performance and product quality, reducing 
waste and improving efficiency.  

Autonomous vehicles and drones similarly rely on AI for 
navigation, object recognition, and collision avoidance, 
revolutionizing transportation and logistics. One particularly 
exciting area is the development of human-robot collaboration 
systems, where AI-driven robots work alongside human 
counterparts. These robots are designed to complement human 
capabilities by handling repetitive, dangerous, or highly precise 

tasks while leaving creative, strategic, or supervisory tasks to 
humans. The challenge of integrating robots into human 
workspaces has spurred research in robotic perception, motion 
planning, and human-robot interaction (HRI). Through 
sophisticated sensors and machine learning algorithms, robots 
can now interpret human gestures, language, and emotions, 
facilitating smoother cooperation. 

The widespread deployment of advanced robots is expected 
to bring both opportunities and challenges. On one hand, robots 
will drive unprecedented levels of efficiency and productivity 
across numerous sectors. In manufacturing. In logistics, 
autonomous delivery robots and drones promise to streamline 
supply chains, reducing costs and delivery times. In healthcare, 
robots are already assisting in surgeries, rehabilitation, and 
elderly care, where they can provide constant monitoring and 
support to patients. The rise of service robots in homes and 
public spaces is another exciting development. Household 
robots capable of cleaning, cooking, and performing basic 
errands could become ubiquitous, transforming daily life and 
alleviating the burden of domestic chores. Social robots 
designed to interact with humans on an emotional level may 
serve as companions, particularly for the elderly or individuals 
with disabilities, providing both practical assistance and 
emotional support. There are also ethical concerns surrounding 
the autonomy of robots, particularly those deployed in sensitive 
areas like healthcare or the military. Autonomous robots making 
decisions without human oversight can pose risks if they 
malfunction or make erroneous judgments. Ensuring 
accountability, transparency, and fairness in the design and 
deployment of these robots is crucial to prevent harm. Looking 
forward, the future of advanced robot fabrication will likely 
involve further convergence of disciplines such as biology, 
materials science, AI, and robotics. Researchers are already 
exploring bio-hybrid robots, which integrate living tissues with 
mechanical components.  

These robots could revolutionize medicine by developing 
systems that heal themselves or perform tasks inside the human 
body. Additionally, improvements in quantum computing may 
radically enhance the decision-making capabilities of robots, 
allowing them to solve complex problems that are currently 
beyond the reach of conventional AI systems. As robots become 
more autonomous and versatile, their roles will expand into 
areas like environmental monitoring, space exploration, and 
disaster recovery, addressing challenges that are currently too 
dangerous or resource-intensive for humans to tackle. Efforts 
are also being made to develop robots that are not only more 
functional but also more sustainable. With concerns about the 
environmental impact of advanced technologies, researchers are 
exploring ways to reduce the carbon footprint of robot 
manufacturing. This could include using recycled materials, 
improving energy efficiency. 
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The fabrication of advanced robots is an interdisciplinary 
endeavor that combines cutting-edge materials, manufacturing 
techniques, and AI-driven technologies. These robots hold 
immense potential to transform industries, improve quality of 
life, and tackle global challenges. However, their rise also 
brings with it complex ethical, social, and economic questions 
that must be addressed. The key to harnessing the benefits of 

advanced robots lies in responsible innovation ensuring that 
they are designed and deployed in ways that maximize societal 
good while minimizing risks. By navigating these challenges 
thoughtfully, we can create a future where humans and robots 
coexist and collaborate in ways that enhance human potential 
and well-being. 
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