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This study provides an in-depth study advanced machining processes and their 
optimization using various machine learning algorithms. The study focuses on key 
machining parameters such as cutting speed (m/min), feed rate (mm/rev), and cutting 
depth (mm), and rotation speed (RPM), investigating their effects on surface roughness 
(Ra) in manufacturing operations. This research addresses emerging challenges in modern 
manufacturing, particularly in the processing of advanced engineering materials for the 
aerospace, automotive, and precision industries. These algorithms were selected for their 
ability to manage complex and non-linear relationships in manufacturing data and for their 
proven performance in predictive modeling. The study explores how these methods can 
overcome traditional limitations in process planning and optimization, especially in 
situations where conventional empirical models are inadequate. Special attention is paid to 
the theoretical foundations of each algorithm, in which linear regression serves as a basic 
model, random forest regression provides improved predictive capabilities through 
ensemble learning, and support vector regression provides robust optimization through its 
ε-insensitive loss function approach.  

The research also explores the important relationship between machine parameter 
optimization and surface quality, emphasizing the importance of parameter optimization 
in achieving desired surface properties while maintaining production efficiency. This 
study advances the field by providing a structured methodology machine parameter 
optimization, particularly relevant to computer-aided process planning and advanced 
manufacturing processes. These findings have significant implications for industries 
requiring high-precision manufacturing, providing insights into How can machine 
learning methods be used effectively? optimize machining processes, reduce production 
costs, and improve surface quality in modern manufacturing operations. 
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Introduction 
High-performance engineering Materials including 

polymers, ceramics, composites, and super alloys, are becoming 
increasingly important in modern manufacturing, particularly in 
the aerospace, automotive, cutting tool and printing industries. 
However, high machine costs and potential material damage 
during processing pose significant challenges, limiting their 
applications. Furthermore, stringent design requirements present 
significant The obstacles facing the manufacturing industry, 
including precision machining of complex objects geometries, 
such as the aerofoil sections of turbine blades and intricate 
cavities in dies and melds, as well as special Drilling 
specifications include non-circular and fine-scale, deep, curved,  

 
or burr-free holes. Additional difficulties arise in machining 

low-rigidity structures, micro- or neon-scale components with 
tight tolerances, hard-to-reach areas and honeycomb structured 
materials.  

Manufacturing of micro-electromechanical systems and the 
achievement of neon-coating surface integrity further complicate 
manufacturing. To address these demands, Unconventional or 
advanced mechanical processes developed after World War II, 
are used for complex and specialized shaping needs [1]. 
Modelling techniques are widely used in manufacturing 
engineering, including planning, optimization, and control. 
However, modelling manufacturing processes presents many 
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challenges, such as the complexity of machine operations, the 
multidimensional and nonlinear nature of machining, inherent 
randomness, and poorly understood relationships between 
parameters.  

In addition, the lack of reliable data further complicates the 
process, making modeling a valuable tool for addressing these 
issues. One possible approach to addressing these challenges it 
involves the use of basic models derived from mechanical 
science principles. However, despite advances in process 
modeling, completely accurate models for manufacturing 
processes are not available. Heuristic models, often based on 
empirical rules, are primarily Qualitative decision making is 
used for evaluation, while empirical models derived from 
experimental data are important in manufacturing process 
modeling. In addition, artificial neural networks serve as useful 
operational models due to their high nonlinearity, ability to 
handle multiple parameters, and incomplete data. With Due to 
their inherent learning ability, ANNs can adjust to variations 
manufacturing environment and are particularly useful when the 
exact relationships between various product parameters are 
unknown [2].  

Process planning serves as the key interface between 
product design and manufacturing. It defines the sequence of 
required operations and specifies essential parameters such as 
machine dimensions, tolerances, machine and tool selection, and 
machining conditions to facilitate part production. In traditional 
process planning, an experienced planner manually creates 
process plans on an ad hoc basis, which often results in 
discrepancies in production output. The lack of optimization in 
this approach leads to high planning and production costs. 
However, with modern computer advancements, this task can 
now be efficiently automated. Computer-aided process planning 
(CAPP) has emerged as a significant advance in manufacturing 
engineering. A key aspect of the CAPP process is selection most 
cost-effective combination of machine conditions. This is 
accomplished through optimization models that balance 
variables such as production time, cost, metal removal rate, and 
profit, maximizing or minimizing them as needed. Like other 
optimization models, these have an objective function and a set 
of constraints.  

Given their typically nonlinear nature, choosing the 
appropriate optimization method depends on these specific 
problems [3]. Machining is an important practice in the 
manufacturing industry, which involves the mechanical cutting 
of materials using specialized tools. It is generally classified into 
two types: Traditional and modern machining. Common 
traditional machining operations include turning, drilling, 
milling, and grinding. In contrast, advanced machining 
techniques such as abrasive water jet machining, electrical 
discharge machining, and electrochemical machining represent 
modern machining methods.  

In machining operations, achieving the optimal balance 
between maximizing Improve productivity, reduce operating 
costs, and improve profitability margin presents a significant 
challenge. Various soft computer Optimization techniques such 
as ant colony optimization, simulated annealing, particle swarm 
optimization, and genetic algorithms are classified as single-
objective optimization methods and have been successfully 
applied in real-world situations. MO GA has emerged as a new 
trend in recent research focusing on optimizing machine process 
parameters. Unlike single-objective GA-optimization 
techniques, where conflicting objectives often lead to 
unbalanced outcomes, MO GA allows for the optimization of 
multiple objective functions simultaneously [4].  

This study examines the impact of electromagnetic radiation 
human body, focusing on a new concept called electromagnetic 
asymmetry (EA), which examines the imbalance between uplink 
and downlink in mobile communication systems. As mobile 
communication services evolve, many, especially high 
multimedia services, will become asymmetric, with the 
downlink demand significantly exceeding the uplink demand in 
both total transmission volume and transmission rate. This paper 
explains the electromagnetic asymmetry (EA) caused by this 
imbalance between uplink and downlink. The environmental 
impact of electromagnetic radiation has long been a topic of 
debate. As mobile communications become more widespread, 
the overall levels of electromagnetic radiation will rise, leading 
to a reassessment of the social consequences of mobile 
communications.  

The influence of electromagnetic radiation is a key factor in 
the research and design of mobile communication systems. This 
paper examines the asymmetric properties of mobile 
communication systems as they are affected by electromagnetic 
radiation [5]. In sand casting, components are formed by pouring 
molten metal into a sand meld. Casting quality is significantly 
affected by the properties of the casting sand. As a result, 
ensuring optimal sand properties is crucial for industrial 
applications. Halter and colleagues it is documented that there 
were approximately 103 million tons of metal are used annually 
to produce cast parts worldwide. Proper mixing of silica sand 
with chemical binders initiates a catalytic reaction, solidifying 
the meld. Chemically bonded silica sand allows melds with 
complex shapes and precise dimensions to be created at ambient 
temperatures.  

However, during the casting process, these melds release 
Hazardous toxic emissions (i.e., chemicals), leading to 
environmental pollution and significant health risks to humans 
[6]. Electrochemical machining is a sophisticated process that 
operates on the principles of electrochemical processes 
principles. It involves the controlled Removal of anodic work 
piece material by a catholic electrode device, following 
Faraday's laws of electrolysis govern the process. Unlike 
electroplating, ECM extracts material from the work piece 
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without depositing it on the cathode, which is achieved by 
ensuring a continuous flow of electrolyte in the gap between the 
electrodes. This process produces a nearly mirror-like 
reproduction of the tool shape work piece. To maintain a 
constant electrode gap under equilibrium or steady state 
conditions, the catholic tool must advance toward the work piece 
at the same rate as the material is removed. In manual ECM 
machines, the tool advance rate present, allowing the IEG to 
adjust toward its stable equilibrium point. In contrast, automatic 
ECM systems can detect the IEG and regulate it in real time 
using a closed-loop control mechanism such as a servo system 
[7].Wire electric Extrusion machining is a high-precision 
thermal machining process designed for the precision machining 
For machining hard materials with complex geometries, this is a 
straightforward method for manufacturing tools and melds and is 
very useful for producing fine-scale components with 
exceptional Accuracy in dimensions and surface quality.  

Molybdenum wire is used in special applications requiring 
high tensile strength to provide adequate load-bearing capacity 
in fine diameterswires. Experimental studies are necessary to 
assess the impact Influence of process parameters on accuracy, 
volumetric material removal rate, and surface texture. Since the 
process is dependent on many factors, evaluating the 
performance of all parameters presents a significant challenge 
[8].  Electric discharge machining is a commonly used 
unconventional material removal method. The primary a major 
advantage of this process is its independence from the 
mechanical properties of the material and the elimination of 
shear forces. Forces.  

As a result, even materials with Materials with high 
hardness, brittleness, or strength can be efficiently machined to 
achieve the desired shape. Since EDM is an expensive process, it 
is necessary to Adjust process parameters to increase production 
efficiency and reduce machine time. Since each parameter 
affects performance metrics differently, determining the best set 
of process parameters is challenging [9]. The demand for greater 
efficiency and precision in manufacturing has led to the 
development of the next generation class of multifunctional 
computer numerical control (CNC) machine tools called turning 
machines. These machines can perform multiple operations 
simultaneously using multiple turrets and spindles. In a turning 
machine, the three-jaw chuck is referred to as the part holding 
location (PHL), while the turret, which is driven by Servo 
motors are referred to as power turrets. Turning machines have 
recently gained popularity due to their ability to perform both 
turning and turning operations. By requiring fewer setups for 
many tasks, they significantly reduce work piece transfer and 
setup time.  

This reduction in setups reduces setup errors, which leads to 
improved product accuracy. In addition, turning machines offer 
improved manufacturing capabilities, including simultaneous 
and simultaneously machine. In the initial machine mode, two 

power turrets (PTs) can perform the same feature or function at 
the same time. Traditionally, conventional machine tools only 
allow one function at a time. Thus, a turning machine tool serves 
as a viable alternative to two traditional machines, such as a 
milling machine and a lathe [10]. Genetic algorithms are widely 
used heuristics that have proven Skilled in addressing various 
types of optimization challenges. They help maintain the 
consistency of mathematical models. Scheduling involves 
allocating limited resources to tasks over time are a strategic 
decision-making process that considers activities, time, costs, 
and overall organizational objectives. It also requires integrating 
different types of data. Scheduling involves modelling processes, 
defining task-resource relationships, setting goals and 
performance metrics, and establishing data structures that tie all 
components together. Schedules assign resources to tasks at 
specific times, which can range from mechanical operations to 
software development. Resources include personnel, machinery, 
and raw materials. Typical objectives include reducing project 
duration, increasing net present value, or reducing the number of 
products delivered beyond the deadline.  

In For project scheduling problems with multiple 
implementation approaches, the genetic algorithm proved to be 
more effective than deterministic methods and finite numerical 
search methods [11]. However, these values serve as initial 
guidelines rather than optimal settings. Optimizing cutting 
parameters is often a challenging task that involves several key 
aspects: understanding machining processes, using Empirical 
formulas are used to define practical constraints for the tool life, 
forces, power, surface finish, etc. An essential aspect of any 
optimization procedure is the identification of the key output, 
which is called the Optimization objective or criterion. In 
manufacturing processes, a commonly used optimization 
criterion is specific cost, which has been used by many 
researchers since the early stages field to recent studies [12]. In 
our study, we discuss Tool path length, tool selection, and 
planning techniques for a turning operation, with particular focus 
on tool path length and cutting force, and key machine 
parameters for rotating work pieces prepared for optimization 
within the MATLAB environment. The optimization process 
involves determining tool paths for each length segment Rotary 
machine designs can be represented as 2D models, determined 
by the geometry of the work pieces, although more complex 
geometric models (3D machining operations) can be created to 
account for machine complexity. In this context, the tool path 
length can be optimized by turning, and the best tool selection is 
determined based on the machine geometry to achieve the 
optimal tool path length.  

In addition, in our study, the machine parameters, including 
depth of cut, feed rate, and cutting speed, are optimized using a 
genetic algorithm. This section focuses on optimizing path 
length for a rotating work piece, especially for External turning 
involves primary and secondary machining processes. The 
primary machining process involves turning, while secondary 
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machining includes processes such as chamfering, facing, radii, 
creating concave and convex shapes, tapering, and cylindrical 
shaping. Secondary turning operations include grooving, 
drilling, turning, threading, and cutting [13]. When appropriate 
tool life equations are available, optimization analysis can also 
be applied to milling processes. Fortunately, numerous 
Researchers have developed equations for real-world grinding 
processes, which include a wide range of process variables. 
Detailed milling process models and the advancement of 
computer-aided manufacturing has laid the foundation for 
optimizing grinding parameters. Previous studies on optimizing 
grinding parameters have primarily focused on approaches to 
improve control during the grinding process. A technique for 
optimizing both grinding and dressing parameters to increase 
work piece material removal rates, while maintaining controls on 
work piece burnout and surface finish, is discussed in the 
reference. In addition, the use of quadratic programming to 
optimize grinding parameters under multi-objective operations is 
reported in another reference. In the authors' previous research, a 
genetic algorithm-based optimization approach was effectively 
implemented to address surface grinding process problem, 
focusing on a single objective function [14]. The WEDM 
process is a thermal-electrical machining method Material is 
removed from the work piece by a series of discrete sparks that 
occur between the work piece and a wire electrode 
(tool).Dimensional and geometric accuracy the accuracy of the 
cutting profile depends on the accuracy of the wire control 
mechanism.  

The dimensional and geometric accuracy of the cutting 
profile is affected by the accuracy of the wire control 
mechanism. Selecting appropriate Optimizing process 
parameters is crucial to improving the overall performance of the 
WEDM process is a useful method to overcome the challenge of 
linking process parameters to performance metrics, but a review 
of the literature indicates that previous studies have not 
incorporated any modeling approaches [15]. CNC machines are 
widely used in industry today, but their operation can be 
expensive due to the many parameters involved. It is well 
established that in order to maximize machining efficiency, it is 
necessary to select optimal cutting conditions, including feed 
rate, cutting speed, and depth of cut, considering productivity 
and overall manufacturing cost per component. Agape 
developed the optimal machining conditions using the Elder-
Mead simplex method. The objective function involves It is a 
combination of minimum production cost and minimum 
production time, with production cost being prioritized based on 
their weight coefficients. A fixed multiplier is used to normalize 
the objective function. Physical constraints related to the cutting 
parameters are also taken into account.  

The performance of the combined objective function 
compared to single-scale objective functions ratio [16]. To 
achieve High surface quality and precise shape accuracy work 
piece, meld polishing is a finishing process that uses bonded 

abrasive materials. In a meld machine, surface polishing often 
takes a considerable amount of time and is usually performed by 
skilled operators. As a result, the development of a specialized 
meld polishing tool is a practical solution. Polishing systems 
based on industrial robotic architectures offer many advantages, 
including a large work area, great flexibility, and the ability to 
effectively control both force and position. However, unlike 
computer numerical control (CNC) machines, they face 
challenges in planning and tracking free-form surfaces, and have 
relatively large tracking errors. On the other hand, parallel 
polishing machines are generally faster and more powerful than 
traditional joint polishing robots, but their work areas are usually 
much smaller. This type of mechanical system faces problems 
related to inaccuracy of movement due to low rigidity. Polishing 
of axial surfaces is usually carried out using elastic polishing, 
which involves a relatively small polishing force, thereby 
reducing the requirements on the rigidity and accuracy of the 
machine [17]. To remain competitive in the market, it is 
essential to analyze and reduce Time and cost to increase the 
efficiency of part production manufacturing process.  

These methods include Taguchi method, fuzzy logic 
algorithm, artificial intelligence, genetic algorithm, artificial 
neural networks, artificial bee colony algorithm, ant colony 
optimization and matching search algorithm. [18]. Process 
planning defines how a product, from semi-finished goods to 
finished parts, will be manufactured using available 
manufacturing resources. It is a key component in coordinating 
design and downstream manufacturing processes. In general, 
process planning involves two main tasks: selecting operations 
and sequencing those operations. Operation selection is based on 
the geometric features and technical requirements of the part, 
including selecting the appropriate machine, calculating the 
cutting tool, and machining parameters. Operation sequencing 
focuses on organizing the machining operations into a series of 
steps that produce each feature of the part while meeting the 
technical constraints outlined in the part drawing.  

Typically, the operation sequence in process planning 
should aim to achieve some objective, such as minimizing the 
combined costs of machines, cutting tools, and changeover 
devices. This objective involves complex properties and 
complex priority relationships, which makes solving the 
operation sequence problem challenging [19]. Despite advances 
in modern machining technologies, grinding remains an 
important process. As with other manufacturing methods, the 
roughness of the ground surface significantly affects operational 
characteristics product. A high-quality ground surface is known 
to improve Fatigue resistance and corrosion durability. Surface 
roughness also affects friction and light reflection, lubricant 
retention, Electrical and thermal contact resistance, aesthetics 
and cost. An excellent surface finish often eliminates the need 
for further machining, reduces power consumption, and 
environmental impact.  
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Therefore, it is crucial to understand the factors that 
determine surface roughness and accurately predict it. 
Influencing parameters are classified into controlled and 
uncontrolled factors. The main the regulated cutting parameters 
include spindle speed, feed rate, and depth of cut. However, 
there are many uncontrolled factors, such as Vibrations, tool 
wear, machine movement errors, material inconsistencies in both 
the tool and work piece, and chip formation are difficult to 
control, and their interactions are challenging to accurately 
predict [20].  
2. MATERIAL AND METHODS 

Material 
Cutting speed (m/min) (x1): Cutting speed, Measured in 

meters per minute (m/min), this refers to the relative motion 
between the cutting tool and the work piece machining. It plays 
a key role in determining tool longevity, surface finish, and 
overall machine performance. The ideal cutting speed is 
influenced by factors such as material properties, tool 
composition, coolant use, and machine stability. While higher 
speeds increase productivity, they can also cause rapid tool wear 
or thermal damage. Conversely, lower speeds extend tool life but 
compromise performance. Selecting the appropriate cutting 
speed ensures optimal performance, while maintaining accuracy 
and surface quality in turning, milling, and drilling. 

Feed rate (mm/rev) (x2): The feed rate, expressed in 
millimeters/revolution (mm/rev), represents the distance the 
cutting tool moves forward with each spindle revolution. It has a 
significant impact on surface finish, cutting forces, and tool life. 
The ideal feed rate is influenced by factors such as work piece 
material, tool design, machine rigidity, and cutting conditions. 
Higher feed rates improve material removal efficiency but can 
lead to rougher finishes and accelerated tool wear. Conversely, 
lower feed rates improve surface quality but reduce machining 
speed. Selecting the correct feed rate ensures optimal machining 
performance, accuracy, tool life, and cost-effectiveness in 
turning, milling, and drilling. 

Depth of cut (mm) (x3): It has a major impact on 
mechanization efficiency, Tool life, surface quality and cutting 
forces. Optimum depth of cut influenced by factors such as work 
piece material, tool strength, machining efficiency, and cutting 
conditions. A higher depth of cut increases material removal but 
increases cutting forces, tool wear, and vibration. Conversely, a 
shallower cut improves surface quality and accuracy but reduces 
productivity. Choosing the appropriate depth ensures a balance 
between performance, tool longevity, and machine efficiency in 
turning, milling, and drilling. 

Rotational speed (RPM) (x4): Rotational motion refers to 
the motion in which an object moves about its own axis without 
any change in its spatial position. The Rotational speed is 
measured in radians per second or revolutions per minute. It is 
defined by angular displacement, angular velocity, and angular 

acceleration. RPM, which stands for revolutions per minute, is a 
measure of how many complete revolutions an object makes 
around a fixed axis in one minute. Rotational speed, also known 
as angular velocity, it refers to the number of cycles a system 
performs in a given period of time. It usually measured in rev/s 
(s⁻ ¹), while pump speeds are often given in min⁻ ¹ (RPM). 

Surface roughness (Ra): Surface roughness, referred to as 
Ra, measures the texture of a machined surface by evaluating 
deviations from a smooth surface. Ra Cutting speed is affected 
by mechanical factors such as feed rate, depth of cut, and tool 
geometry. Smaller Ra values indicate a smoother finish, whereas 
larger values indicate a rougher surface. Controlling surface 
roughness is essential to meet functional and aesthetic standards 
in manufacturing and to ensure optimal performance in 
industries such as automotive, aerospace, and precision 
engineering. 
Instructions for machine learning 

Linear Regression: A Statistical Method Used valuable 
technique for predicting quantitative outcomes and has been 
extensively studied in numerous textbooks over time. Although 
it may seem less exciting than modern statistical learning 
methods, it is widely used and very relevant. In addition, it 
serves as a foundation for more advanced techniques, as many 
sophisticated statistical learning methods can be seen as 
extensions or generalizations of linear regression. Therefore, a 
solid understanding of linear regression is essential before 
exploring more complex approaches. This chapter examines the 
basic concepts of linear regression and the least squares method, 
which is commonly used to build a model. Regression serves 
two primary purposes. First, it is widely used for forecasting and 
prediction, often with significant overlap with machine learning 
applications.  

Second, in some cases, regression analysis helps identify 
causal relationships between independent and dependent 
variables. Through regression analysis, the dependent variable 'y' 
is predicted based on different values of the independent 
variables. variable 'x'. This paper focuses on linear regression 
and multinomial regression, both of which are well suited for 
predictive modelling. Regression can take the A type of 
regression that can be simple linear regression or multiple 
regression. Simple linear regression involves a model in which 
single independent variable to determine its effect on a 
dependent variable. It is represented by the equation   = β  + 
β   +  , which describes the relationship between the 
variables. In addition, simple regression helps to distinguish the 
impact of independent variables from the interactions within the 
dependent variables. 

Random Forest Regression: Random forest regression is a 
powerful supervised machine learning method used for 
predictive modeling. It falls under the category of ensemble 
methods and is built on the basis of decision tree algorithms. In 
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this approach, multiple decision trees are trained on different 
dataset subsets, and their outputs are averaged to improve 
prediction accuracy method not only improves performance, but 
also reduces the computational burden associated with training, 
storing, and predicting with multiple individual models. Due to 
its efficiency, random forests are very useful for regression 
tasks, where they are typically used to predict continuous values. 
The random forest method works by creating a "forest" of 
multiple independently constructed decision trees, with the final 
prediction obtained by averaging the outputs of all the trees. By 
exposing each tree to slightly different data, this approach helps 
reduce variance and increase over fitting, ultimately improving 
the generalize ability of the model. 

Support Vector Regression: A regression problem extends 
a classification problem, where the model produces a 

continuous-valued output instead of selecting from a set of 
defined categories. Simply put, a regression model predicts a 
continuous multivariate output relationship. Support vector 

machines (SVMs) are designed as convergent optimization tasks 
to address binary classification problems (Vapnik, 1998). The 
goal is to identify an optimal hyper plane that maximizes the 

edge when classifying the maximum training points accurately. 
This hyper plane is defined using support vectors. Due to their 

sparse solution and strong generalization capabilities, SVMs are 
also well suited for regression tasks. The transition from Support 
vector regression extends SVM by incorporating a ε-insensitive 

part called a ε-pipe. As a result, a multi-objective function is created that encompasses both the loss function, together with 
the geometric properties, model. 

3. RESULT AND DISCUSSION 
TABLE 1. Machining process optimization genetic algorithm 

x1 x2 x3 x4 Ra 
1250 533.4 76.2 1725.29 2.4892 
1250 533.4 127 1845.55 2.667 
1000 228.6 25.4 911.13 2.3368 
1000 228.6 76.2 1225.66 2.4384 
1000 228.6 127 1425.78 2.5908 
1000 381 25.4 1000.77 3.2766 
1000 381 76.2 1486.15 2.7432 
1000 381 127 1597.07 2.3368 
1000 533.4 25.4 1033.83 3.7846 
1000 533.4 76.2 1679.39 3.683 
1000 533.4 127 1687.24 2.8448 
750 228.6 25.4 930.96 2.7686 
750 228.6 72.6 1254.68 2.5146 
750 228.6 127 1171.25 2.413 
750 381 25.4 950.24 3.175 
750 381 76.2 1513.81 3.0988 
750 381 127 1529.82 2.6416 
750 533.4 25.4 1135.16 4.5212 
750 533.4 76.2 1624.06 4.1402 
750 533.4 127 1658.57 3.81 
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Table 1 illustrates how Spindle speed (x ), feed rate (x ), 
depth of cut (x ), and cutting speed (x ) collectively affect 
determine Ra values. Higher spindle speeds, such as 1250 rpm, 
generally yield lower Ra values, ranging from 2.4892 to 2.667. 
Conversely, lower spindle speeds, such as 750 rpm, tend to 
increase Ra, with values exceeding 4.5 under certain conditions. 
Feed rate also plays an important role; at 533.4 mm/min and 
25.4 mm depth of cut, Ra reaches 4.5212, the highest in the 
dataset, indicating that excessive feed rate combined with low 
spindle speed worsens surface quality. However, at 1000 rpm, at 
381 Feed rate mm/min and cutting depth 127 mm, Ra reaches a 
minimum of 2.3368, indicating an optimal balance. Depth of cut 
and cutting speed affect each other because is evident in 

variations in the same spindle speeds and feed rates. For 
example, at 1000 rpm and 381 mm/min, increasing the cutting 
depth from 25.4 mm to 127 mm reduces Ra 3.2766 to 2.3368. 
This indicates that a modest increase in depth of cut can 
improve surface quality when combined with appropriate 
spindle speed and feed rate. Genetic algorithms help identify 
these optimal conditions by analysing complex parameter 
interdependencies, helping to reduce Ra while maintaining 
machine efficiency. By optimizing such parameter interactions, 
manufacturers can fine-tune machine settings to achieve better 
surface results, demonstrating the importance of interoperable 
factors in machining process optimization. 

 
 
TABLE 2. Descriptive Statistics 

 x1 x2 x3 x4 Ra 
count 20 20 20 20 20 
mean 912.5 396.24 78.56 1369.321 3.01371 

std 167.7051 129.8816 41.95856 305.0954 0.650989 
min 750 228.6 25.4 911.13 2.3368 
25% 750 228.6 25.4 1109.828 2.50825 
50% 1000 381 76.2 1455.965 2.7559 
75% 1000 533.4 127 1632.688 3.3782 
max 1250 533.4 127 1845.55 4.5212 

 
The descriptive statistics in Table 2, machine parameters 

and their impact on the surface roughness (Ra). With an average 
spindle speed (x ) of 912.5 rpm and a standard deviation 
167.71, the dataset primarily consists of values ranging from 
750 to 1250 rpm. Similarly, the feed rate (x ) varies between 
228.6 and 533.4 mm/min, with an average of 396.24 mm/min, 
indicating a uniform distribution of low and high feed rates. The 
cutting speed (x ) shows significant variation from 911.13 to 
1845.55 mm/min, with an average of 1369.32 mm/min. These 
parameters interact to affect Ra, which the mean value is 3.0137 
and the standard deviation is 0.6509, indicating moderate 
variation in surface roughness under different machining 
conditions. The minimum Ra is 2.3368, which occurs at optimal 
parameter settings, while the highest Ra of 4.5212 indicates a 

condition where machining inefficiencies such as excessive feed 
rate or improper spindle speed negatively affect the surface 
finish. The quartile distribution also reveals that 25% of the Ra 
values are below 2.5082 and 75% are below 3.3782, indicating 
that most conditions yield acceptable surface roughness. The 
interplay between these variables shows that optimizing 
machining parameters can significantly reduce Ra while 
maintaining performance. For example, medium-range spindle 
speeds (1000 rpm) and moderate feed rates (381 mm/min) often 
result in low Ra values, which are reflected in the 50th 
percentile (2.7559). By understanding these relationships, 
manufacturers can use genetic algorithms to refine machining 
processes, ensuring better surface finishes and operational 
efficiency. 
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FIGURE 1. Scatter plot of the various Machining process optimization genetic algorithm
Figure 1 presents a scatter plot matrix illustrating the 

interaction between machine parameters (x , x , x , and x ) 
Surface roughness (Ra) during the optimizatio
genetic algorithm diagonal histograms depict the distribution of 
each variable, revealing the spread of specific parameter values. 
For example, the spindle speed (x ) is concentrated around 750, 
1000, and 1250 rpm, while the feed rate (x ) 
groups at 228.6 mm/min, 381 mm/min, and 533.4 mm/min. 
Depth of cut (x ) and cutting speed (x ) show a categorical 
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nature, indicating predefined parameter positions. The scatter 
plots highlight the relationships between the variables, showing
how different machine parameters affect Ra. Ra values at 
various Depth of cut and feed rate indicates that these 
parameters interact with each other to influence the surface 
finish. In particular, a cluster of low Ra values 
parameter combinations indicates optimal machining 
conditions.By analysing these interactions, genetic algorithms 
can refine machining settings, ensuring efficiency and improved 
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surface quality. This visualization underscores the importance of 

FIGURE  2. Correlation heat map between the process parameters and the responses
Figure 2 presents a correlation heat map illustrating the 

interaction between the machining parameters (x
x ) and surface roughness (Ra). The color gradient indicates 
the strength of the correlation, where darker shades indicate 
stronger relationships. Conversely, the spindle speed (x
shows a moderate negative correlation with Ra (
indicating that increasing the spindle speed can help reduce 
surface roughness. The depth of cut (x ) also shows a weak 
negative correlation with Ra (-0.35), indicating that some 
machining conditions may allow deeper cuts without 
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surface quality. This visualization underscores the importance of parameter interaction in improving machining performance.
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indicating that increasing the spindle speed can help reduce 

 ) also shows a weak 
), indicating that some 

machining conditions may allow deeper cuts without 

significantly degrading the surface finish. Interestingly, cutting 
speed (x ) has almost zero correlation (
indicating minimal direct influence on surface roughness
correlations illustrate how machining parameters interact to 
affect surface quality. Understanding these correlations enables 
optimization through genetic algorithms, allowing fine
the spindle speed, feed rate, and depth of cut are adjust
achieve the desired size Ra while maintaining machining 
efficiency. 
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achieve the desired size Ra while maintaining machining 
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Linear Regression (LR) 

A) b) 
FIGURE 3.Predictive accuracy of linear regression model in machining process optimization Genetic algorithm (a) training; (b) 
testing. 

Figure 3 illustrates the Forecast accuracy of linear 
regression model in a genetic algorithm for machine process 
optimization. Subfigure (a) represents the training dataset, while 
subfigure (b) corresponds to the test dataset. The s
compare the actual and predicted surface roughness (Ra) values, 
with the dashed line representing an ideal predictive scenario 
where the predicted Ra matches the actual Ra exactly. In the 
training dataset, the estimated values closely match 
measurements, suggesting a strong model fit. The distribution of 
points on the diagonal indicates that the model effectively learns 
the relationship between machine parameters and Ra. However, 
small deviations suggest potential areas for further
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Figure 3 illustrates the Forecast accuracy of linear 
regression model in a genetic algorithm for machine process 
optimization. Subfigure (a) represents the training dataset, while 
subfigure (b) corresponds to the test dataset. The scatter plots 
compare the actual and predicted surface roughness (Ra) values, 
with the dashed line representing an ideal predictive scenario 
where the predicted Ra matches the actual Ra exactly. In the 

closely match the actual 
measurements, suggesting a strong model fit. The distribution of 
points on the diagonal indicates that the model effectively learns 
the relationship between machine parameters and Ra. However, 
small deviations suggest potential areas for further refinement. 

In contrast, the test dataset contains significantly fewer data 
points, making it challenging to comprehensively evaluate the 
generalize ability of the model. The single visible point deviates 
slightly from the ideal diagonal, indicating the d
between the actual and predicted Ra values, model may need 
further validation with a larger test set to ensure robustness. 
Overall, the model shows strong performance on the training 
data; however, results indicate that further evaluation is need
for reliable predictions on unseen events. Combining highly 
diverse test data and optimizing hyper parameters will improve 
prediction accuracy in machining process optimization.
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In contrast, the test dataset contains significantly fewer data 
points, making it challenging to comprehensively evaluate the 
generalize ability of the model. The single visible point deviates 
slightly from the ideal diagonal, indicating the difference 
between the actual and predicted Ra values, model may need 
further validation with a larger test set to ensure robustness. 
Overall, the model shows strong performance on the training 
data; however, results indicate that further evaluation is needed 
for reliable predictions on unseen events. Combining highly 
diverse test data and optimizing hyper parameters will improve 
prediction accuracy in machining process optimization. 
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a)                                                                                                                    
FIGURE 4.Predictive accuracy of the random forest regression model in machining process optimization genetic algorithm a) train b) 
test 

Figure 4 presents Forecast accuracy of the random forest 
regression model used for mechanical process optimization 
using genetic algorithm. Subset (a) presents the results for the 
training dataset, while (b) shows the results for the test dataset. 
The scatter plots are for the real and predicted values of surface 
roughness (Ra), with the dashed diagonal line representing the 
best case where the predictions match the actual values are 
accurately reflected. In the training dataset, the predicted Ra 
values closely match the actual measurements, forming a trend 
along the diagonal line. This indicates that the random forest 
model effectively captures the underlying relationships between 
the machine parameters and Ra, which provides high accuracy 
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Predictive accuracy of the random forest regression model in machining process optimization genetic algorithm a) train b) 

Figure 4 presents Forecast accuracy of the random forest 
regression model used for mechanical process optimization 
using genetic algorithm. Subset (a) presents the results for the 
training dataset, while (b) shows the results for the test dataset. 

ter plots are for the real and predicted values of surface 
roughness (Ra), with the dashed diagonal line representing the 
best case where the predictions match the actual values are 
accurately reflected. In the training dataset, the predicted Ra 

sely match the actual measurements, forming a trend 
along the diagonal line. This indicates that the random forest 
model effectively captures the underlying relationships between 
the machine parameters and Ra, which provides high accuracy 

in training. Small variations indicate some residual errors, but 
overall, the model performs well at this stage. However, the test 
dataset presents a challenge, as only a single data point is 
available for evaluation. The predicted value deviates from the 
ideal diagonal, highlighting potential problems in model 
generalization. Limited experimental data preclude a 
comprehensive assessment of prediction reliability in 
unobserved cases. While the random forest model demonstrates 
strong predictive ability in training, further t
dataset is needed to validate its robustness. Additional hyper 
parameter tuning and cross-
generalization performance. 
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FIGURE 5.Predictive accuracy of support vector regression model in machining process optimization genetic algorithm a) train b) 
test 

Figure 5 illustrates the predictive performance of the 
support vector regression (SVR) model in mechanical process 
optimization using genetic algorithm. Substructure (a) presents 
the predicted and actual surface roughness (Ra) for the training 
data, showing a strong correlation with the diagonal reference 
line, indicating accurate predictions. Most of the data points 
align closely with this line, demonstrating the model’s 
effectiveness in capturing the underlying patterns. In contrast, 

subsystem (b) shows predictive performance on the test data, 
where only one data point is available, which limits the 
assessment of generalization ability. The lack of more test data 
points indicates potential data constraints, which makes it 
challenging to comprehensively assess the prediction accuracy. 
Nevertheless, the SVR model appears promising in training 
performance, although further validation on a larger test dataset 
is necessary for reliable results. 

 
 
 
 
 
 
TABLE 3. Regression Model Performance Metrics (Training Data) 

Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE 

Train LR 
Linear 
Regression 0.7940 0.7940 0.0624 0.2498 0.2208 0.5710 0.0044 0.1938 

Train RFR 
Random forest 
regression 0.9413 0.9415 0.0178 0.1333 0.1174 0.2578 0.0011 0.0968 

Train SVR 
Support 
Vector 
Regression 0.8590 0.8590 0.0427 0.2067 0.1636 0.4290 0.0025 0.1003 

 
Table 3 shows the evaluation metrics various regression 

models applied to the training data for machine process 
optimization. The evaluated models include linear regression, 
random forest regression, and support vector regression, with 
key metrics such as R², explained variance score, mean square 
error, root mean square error, mean absolute error, maximum 
error, mean square logarithmic error, and mean absolute error 
(Med AE). Among these models, RFR demonstrates the best 
predictive performance with the highest R² (0.9413) and EVS 
(0.9415), indicating strong explanatory power. It also achieves 
the lowest MSE (0.0178), RMSE (0.1333), and MAE (0.1174), 

indicating minimal predictive errors. In contrast, LR exhibits a 
much weaker performance, with 0.7940 R² and high error 
values, reflecting its limited ability to capture complex 
relationships in the data. SVR outperforms LR, but falls short of 
RFR, reaching 0.8590 R² and achieving moderate error metrics. 
Notably, RFR also records the lowest MSLE (0.0011) and Med 
AE (0.0968), which reinforces its robustness. While these 
results show that SVR and LR have reasonable predictive 
capabilities, RFR outperforms both in accuracy and reliability, 
indicating that it is a more suitable model for machine process 
optimization. 

 
TABLE 4. Regression Model Performance Metrics (Testing Data) 

Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE 

Test LR 
Linear 
Regression 0.6824 0.6860 0.3279 0.5726 0.5694 0.6304 0.0185 0.5694 
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Test RFR 
Random forest 
regression 0.5576 0.5596 0.4567 0.6758 0.6742 0.7198 0.0235 0.6742 

Test SVR 
Support Vector 
Regression 0.5952 0.6020 0.4179 0.6464 0.6410 0.7249 0.0209 0.6410 

 
Table 4 presents the performance metrics of three 

regression models, linear regression, random forest regression, 
and support vector regression, on the test data for machine 
process optimization. The metrics include R², explained 
variance score, mean square error, and root mean square error, 
mean absolute error, maximum error, mean square logarithmic 
error, and mean absolute error (Med AE). Among these models, 
LR shows the highest R² (0.6824) and EVS (0.6860), indicating 
better explanatory power compared to RFR and SVR. In 
addition, LR achieves the lowest MSE (0.3279), RMSE 
(0.5726), and MAE (0.5694), indicating better prediction 
accuracy on the test set. However, the relatively high errors in 
all models indicate challenges in generalization. Interestingly, 
RFR, which performed well on the training data, did not 

perform well on the test data, showing the lowest R² (0.5576) 
and the highest MSE (0.4567), RMSE (0.6758), and MAE 
(0.6742). This indicates possible over fitting, where the model 
captures the training patterns well but struggles with the missing 
data. SVR performs slightly better than RFR, with an R² of 
0.5952 and moderate error values. However, both RFR and SVR 
exhibit higher maximum error values (0.7198 and 0.7249, 
respectively) compared to LR (0.6304), indicating higher 
deviations in the predictions. Overall, although LR shows better 
generalization, the higher errors across all models highlight the 
need for further adjustments or alternative approaches to 
improve the predictive reliability in machine process 
optimization. 

 
 
 
4. CONCLUSION 

Through the analysis Cutting speed, feed rate, depth of cut, 
and rotation speed, several key findings emerge: Descriptive 
statistics revealed that machining parameters significantly affect 
surface roughness, with Ra values ranging from 2.3368 to 
4.5212. Correlation analysis showed that feed rate has a strong 
positive correlation (0.65) with surface roughness, while spindle 
speed demonstrated a moderate negative correlation (-0.34), 
indicating that higher spindle speeds generally contribute to 
better surface finish. Among the three machine learning models 
among the evaluated models (linear regression, random forest 
regression, and support vector regression), random forest 
regression showed the highest performance on the training data, 
achieving the maximum value of 0.9413 and the lowest error 
indicate excellent model performance. Metrics (MSE: 0.0178, 
RMSE: 0.1333, MAE: 0.1174).  

However, the experimental results revealed different 
patterns, with linear regression showing the best generalization 
ability (R² = 0.6824) compared to both random forest regression 
(R² = 0.5576) and support vector regression (R² = 0.5952). This 
discrepancy between training and experimental performance 
indicates possible over fitting in more complex models, 
highlighting the importance of model selection and validation in 
practical applications. The genetic algorithm optimization 
approach proved valuable in identifying optimal parameter 
combinations that reduce surface roughness while maintaining 

machining efficiency. The results indicate that moderate spindle 
speeds (around 1000 rpm) combined with appropriate feed rates 
and depths of cut can achieve optimal surface finish. The study 
also highlighted the importance of parameter interactions in 
determining surface quality. For example, the relationship the 
relationship between cutting depth and cutting speed is a strong 
positive correlation (0.75), indicating their interdependence in 
affecting machining effects. 

For practical applications, these findings suggest that 
manufacturers should: 
a) Carefully consider feed rate settings, as they significantly 

affect surface roughness 
b) Optimize spindle speed to achieve better surface finish 
c) Take parameter interactions into account when adjusting 

machining conditions 
d) Use appropriate machine learning models based on 

available data and desired outcomes 
Future research should focus on expanding the 

experimental dataset to improve model validation, exploring 
additional machine parameters, and developing more robust 
prediction models that maintain high accuracy while avoiding 
over fitting. The integration of real-time monitoring and 
adaptive control systems can further improve the optimization 
process and improve production outcomes. 
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